27 research outputs found

    The magnetic and electric transverse spin density of spatially confined light

    Full text link
    When a beam of light is laterally confined, its field distribution can exhibit points where the local magnetic and electric field vectors spin in a plane containing the propagation direction of the electromagnetic wave. The phenomenon indicates the presence of a non-zero transverse spin density. Here, we experimentally investigate this transverse spin density of both magnetic and electric fields, occurring in highly-confined structured fields of light. Our scheme relies on the utilization of a high-refractive-index nano-particle as local field probe, exhibiting magnetic and electric dipole resonances in the visible spectral range. Because of the directional emission of dipole moments which spin around an axis parallel to a nearby dielectric interface, such a probe particle is capable of locally sensing the magnetic and electric transverse spin density of a tightly focused beam impinging under normal incidence with respect to said interface. We exploit the achieved experimental results to emphasize the difference between magnetic and electric transverse spin densities.Comment: 7 pages, 4 figure

    Spin-Orbit Coupling and the Evolution of Transverse Spin

    Full text link
    We investigate the evolution of transverse spin in tightly focused circularly polarized beams of light, where spin-orbit coupling causes a local rotation of the polarization ellipses upon propagation through the focal volume. The effect can be explained as a relative Gouy-phase shift between the circularly polarized transverse field and the longitudinal field carrying orbital angular momentum. The corresponding rotation of the electric transverse spin density is observed experimentally by utilizing a recently developed reconstruction scheme, which relies on transverse-spin-dependent directional scattering of a nano-probe.Comment: 4 pages, 2 figure

    Constructing a chiral dipolar mode in an achiral nanostructure

    Full text link
    We discuss the excitation of a chiral dipolar mode in an achiral silicon nanoparticle. In particular, we make use of the electric and magnetic polarizabilities of the silicon nanoparticle to construct this chiral electromagnetic mode which is conceptually similar to the fundamental modes of 3D chiral nanostructures or molecules. We describe the chosen tailored excitation with a beam carrying neither spin nor orbital angular momentum and investigate the emission characteristics of the chiral dipolar mode in the helicity basis, consisting of parallel electric and magnetic dipole moments, phase shifted by ±π/2\pm \pi/2. We demonstrate the wavelength dependence and measure the spin and orbital angular momentum in the emission of the excited chiral mode.Comment: 6 pages, 3 figure

    Orbital-to-Spin Angular Momentum Conversion Employing Local Helicity

    Full text link
    Spin-orbit interactions in optics traditionally describe an influence of the polarization degree of freedom of light on its spatial properties. The most prominent example is the generation of a spin-dependent optical vortex upon focusing or scattering of a circularly polarized plane-wave by a nanoparticle, converting spin to orbital angular momentum of light. Here, we present a mechanism of conversion of orbital-to-spin angular momentum of light upon scattering of a linearly polarized vortex beam by a spherical silicon nanoparticle. We show that focused linearly polarized Laguerre-Gaussian beams of first order (ℓ=±1\ell = \pm 1) exhibit an ℓ\ell-dependent spatial distribution of helicity density in the focal volume. By using a dipolar scatterer the helicity density can be manipulated locally, while influencing globally the spin and orbital angular momentum of the beam. Specifically, the scattered light can be purely circularly polarized with the handedness depending on the orbital angular momentum of the incident beam. We corroborate our findings with theoretical calculations and an experimental demonstration. Our work sheds new light on the global and local properties of helicity conservation laws in electromagnetism.Comment: 8 pages, 6 figures, 1 tabl

    Generating free-space structured light with programmable integrated photonics

    Full text link
    Structured light is a key component of many modern applications, ranging from superresolution microscopy to imaging, sensing, and quantum information processing. As the utilization of these powerful tools continues to spread, the demand for technologies that enable the spatial manipulation of fundamental properties of light, such as amplitude, phase, and polarization grows further. In this respect, technologies based on liquid-crystal cells, e.g., spatial light modulators, became very popular in the last decade. However, the rapidly advancing field of integrated photonics allows entirely new routes towards beam shaping that not only outperform liquid-crystal devices in terms of speed, but also have substantial potential with respect to robustness and conversion efficiencies. In this study, we demonstrate how a programmable integrated photonic processor can generate and control higher-order free-space structured light beams at the click of a button. Our system offers lossless and reconfigurable control of the spatial distribution of light's amplitude and phase, with switching times in the microsecond domain. The showcased on-chip generation of spatially tailored light enables an even more diverse set of methods, applications, and devices that utilize structured light by providing a pathway towards combining the strengths of programmable integrated photonics and free-space structured light

    Huygens' Dipole for Polarization-Controlled Nanoscale Light Routing

    Full text link
    Structured illumination allows for satisfying the first Kerker condition of in-phase perpendicular electric and magnetic dipole moments in any isotropic scatterer that supports electric and magnetic dipolar resonances. The induced Huygens' dipole may be utilized for unidirectional coupling to waveguide modes that propagate transverse to the excitation beam. We study two configurations of a Huygens' dipole -- longitudinal electric and transverse magnetic dipole moments or vice versa. We experimentally show that only the radially polarized emission of the first and azimuthally polarized emission of the second configuration are directional in the far-field. This polarization selectivity implies that directional excitation of either TM or TE waveguide modes is possible. Applying this concept to a single nanoantenna excited with structured light, we are able to experimentally achieve scattering directivities of around 23 dB and 18 dB in TM and TE modes, respectively. This strong directivity paves the way for tunable polarization-controlled nanoscale light routing and applications in optical metrology, localization microscopy and on-chip optical devices.Comment: 5pages, 2 figure

    Absolute characterization of high numerical aperture microscope objectives utilizing a dipole scatterer

    Get PDF
    Measuring the aberrations of optical systems is an essential step in the fabrication of high precision optical components. Such a characterization is usually based on comparing the device under investigation with a calibrated reference object. However, when working at the cutting-edge of technology, it is increasingly difficult to provide an even better or well-known reference device. In this manuscript we present a method for the characterization of high numerical aperture microscope objectives, functioning without the need of calibrated reference optics. The technique constitutes a nanoparticle, acting as a dipole-like scatterer, that is placed in the focal volume of the microscope objective. The light that is scattered by the particle can be measured individually and serves as the reference wave in our system. Utilizing the well-characterized scattered light as nearly perfect reference wave is the main idea behind this manuscript

    Spatially resolving amplitude and phase of light with a reconfigurable photonic integrated circuit

    Get PDF
    Photonic integrated circuits (PICs) play a pivotal role in many applications. Particularly powerful are circuits based on meshes of reconfigurable Mach-Zehnder interferometers as they enable active processing of light. Various possibilities exist to get light into such circuits. Sampling an electromagnetic field distribution with a carefully designed free-space interface is one of them. Here, a reconfigurable PIC is used to optically sample and process free-space beams so as to implement a spatially resolving detector of amplitudes and phases. In order to perform measurements of this kind we develop and experimentally implement a versatile method for the calibration and operation of such integrated photonics based detectors. Our technique works in a wide parameter range, even when running the chip off the design wavelength. Amplitude, phase and polarization sensitive measurements are of enormous importance in modern science and technology, providing a vast range of applications for such detectors
    corecore