2,337 research outputs found

    Can Baryonic Features Produce the Observed 100 Mpc Clustering?

    Get PDF
    We assess the possibility that baryonic acoustic oscillations in adiabatic models may explain the observations of excess power in large-scale structure on 100h^-1 Mpc scales. The observed location restricts models to two extreme areas of parameter space. In either case, the baryon fraction must be large (Omega_b/Omega_0 > 0.3) to yield significant features. The first region requires Omega_0 < 0.2h to match the location, implying large blue tilts (n>1.4) to satisfy cluster abundance constraints. The power spectrum also continues to rise toward larger scales in these models. The second region requires Omega_0 near 1, implying Omega_b well out of the range of big bang nucleosynthesis constraints; moreover, the peak is noticeably wider than the observations suggest. Testable features of both solutions are that they require moderate reionization and thereby generate potentially observable (about 1 uK) large-angle polarization, as well as sub-arc-minute temperature fluctuations. In short, baryonic features in adiabatic models may explain the observed excess only if currently favored determinations of cosmological parameters are in substantial error or if present surveys do not represent a fair sample of 100h^-1 Mpc structures.Comment: LaTeX, 7 pages, 5 Postscript figures, submitted to ApJ Letter

    Observation of a Linearly Dispersing Collective Mode in a Quantum Hall Ferromagnet

    Get PDF
    Double layer two-dimensional electron systems can exhibit a fascinating collective phase believed to exhibit both quantum ferromagnetism and excitonic superfluidity. This unusual phase has recently been found to exhibit tunneling phenomena reminiscent of the Josephson effect. A key element of the theoretical understanding of this bizarre quantum fluid is the existence of linearly dispersing Goldstone collective modes. Using the method of tunneling spectroscopy, we have demonstrated the existence of these modes. We find the measured velocity to be in reasonable agreement with theoretical estimates.Comment: 5 pages, 4 figures; accepted for publication in PRL. Contains new data, a new figure, and a new titl

    Stability of the compressible quantum Hall state around the half-filled Landau level

    Full text link
    We study the compressible states in the quantum Hall system using a mean field theory on the von Neumann lattice. In the lowest Landau level, a kinetic energy is generated dynamically from Coulomb interaction. The compressibility of the state is calculated as a function of the filling factor ν\nu and the width dd of the spacer between the charge carrier layer and dopants. The compressibility becomes negative below a critical value of dd and the state becomes unstable at ν=1/2\nu=1/2. Within a finite range around ν=1/2\nu=1/2, the stable compressible state exists above the critical value of dd.Comment: 4 pages, 4 Postscript figures, RevTe

    Thermodynamic Signature of a Two-Dimensional Metal-Insulator Transition

    Full text link
    We present a study of the compressibility, K, of a two-dimensional hole system which exhibits a metal-insulator phase transition at zero magnetic field. It has been observed that dK/dp changes sign at the critical density for the metal-insulator transition. Measurements also indicate that the insulating phase is incompressible for all values of B. Finally, we show how the phase transition evolves as the magnetic field is varied and construct a phase diagram in the density-magnetic field plane for this system.Comment: 4 pages, 4 figures, submitted to Physical Review Letters; version 1 is identical to version 2 but didn't compile properl

    NMR Determination of 2D Electron Spin Polarization at ν=1/2\nu=1/2

    Full text link
    Using a `standard' NMR spin-echo technique we determined the spin polarization of two-dimensional electrons, confined to GaAs quantum wells, from the hyperfine shift of Ga nuclei in the wells. Concentrating on the temperature and magnetic field dependencies of spin polarization at Landau level filling factor ν=1/2\nu =1/2, we find that the results are described well by a simple model of non-interacting composite fermions, although some inconsistencies remain when the two-dimensional electron system is tilted in the magnetic field.Comment: 4 pages (REVTEX) AND 4 figures (PS

    Absorption in the fractional quantum Hall regime: trion dichroism and spin polarization

    Full text link
    We present measurements of optical interband absorption in the fractional quantum Hall regime in a GaAs quantum well in the range 0 < nu < 1. We investigate the mechanism of singlet trion absorption, and show that its circular dichroism can be used as a probe of the spin polarization of the ground state of the two-dimensional electron system (2DES). We find that at nu = 1/3 the 2DES is fully spin-polarized. Increasing the filling factor results in a gradual depolarization, with a sharp minimum in the dichroism near nu = 2/3. We find that in the range 0.5 < nu < 0.85 the 2DES remains partially polarized for the broad range of magnetic fields from 2.75 to 11 Tesla. This is consistent with the presence of a mixture of polarized and depolarized regions.Comment: 4 pages, 4 figures (Fig 4 is in color

    Shifting the quantum Hall plateau level in a double layer electron system

    Full text link
    We study the plateaux of the integer quantum Hall resistance in a bilayer electron system in tilted magnetic fields. In a narrow range of tilt angles and at certain magnetic fields, the plateau level deviates appreciably from the quantized value with no dissipative transport emerging. A qualitative account of the effect is given in terms of decoupling of the edge states corresponding to different electron layers/Landau levels.Comment: 3 pages, 3 figures include

    Cosmological extrapolation of MOND

    Full text link
    Regime of MOND, which is used in astronomy to describe the gravitating systems of island type without the need to postulate the existence of a hypothetical dark matter, is generalized to the case of homogeneous distribution of usual matter by introducing a linear dependence of the critical acceleration on the size of region under consideration. We show that such the extrapolation of MOND in cosmology is consistent with both the observed dependence of brightness on the redshift for type Ia supernovae and the parameters of large-scale structure of Universe in the evolution, that is determined by the presence of a cosmological constant, the ordinary matter of baryons and electrons as well as the photon and neutrino radiation without any dark matter.Comment: 20 pages, 5 figures, comments adde

    Tunneling Between a Pair of Parallel Hall Droplets

    Full text link
    In this paper, we examine interwell tunneling between a pair of fractional quantum Hall liquids in a double quantum well system in a tilted magnetic field. Using a variational Monte Carlo method, we calculate moments of the intra-Landau level tunneling spectrum as a function of in-plane field component BB_{\parallel} and interwell spacing dd. This is done for variety of incompressible states including a pair of ν=1/3\nu=1/3 layers ([330]), pair of ν=1/5\nu=1/5 layers ([550]), and Halperin's [331] state. The results suggest a technique to extract interwell correlations from the tunneling spectral data.Comment: 21 pages and 8 figures (included), RevTeX, preprint no. UCSDCU

    Absence of Floating Delocalized States in a Two-Dimensional Hole Gas

    Full text link
    By tracking the delocalized states of the two-dimensional hole gas in a p-type GaAs/AlGaAs heterostructure as a function of magnetic field, we mapped out a phase diagram in the density-magnetic-field plane. We found that the energy of the delocalized state from the lowest Landau level flattens out as the magnetic field tends toward zero. This finding is different from that for the two-dimensional electron system in an n-type GaAs/AlGaAs heterostructure where delocalized states diverge in energy as B goes to zero indicating the presence of only localized states below the Fermi energy. The possible connection of this finding to the recently observed metal-insulator transition at B = 0 in the two-dimensional hole gas systems is discussed.Comment: 10 pages, 4 Postscript figures, To be published in Physical Review B (Rapid Communications) 58, Sept. 15, 199
    corecore