5,180 research outputs found
Anisotropic States of Two-Dimensional Electron Systems in High Landau Levels: Effect of an In-Plane Magnetic Field
We report the observation of an acute sensitivity of the anisotropic
longitudinal resistivity of two-dimensional electron systems in half-filled
high Landau levels to the magnitude and orientation of an in-plane magnetic
field. In the third and higher Landau levels, at filling fractions nu=9/2,
11/2, etc., the in-plane field can lead to a striking interchange of the "hard"
and "easy" transport directions. In the second Landau level the normally
isotropic resistivity and the weak nu=5/2 quantized Hall state are destroyed by
a large in-plane field and the transport becomes highly anisotropic.Comment: 5 pages, 4 figures, minor errors correcte
Improved forecasts for the baryon acoustic oscillations and cosmological distance scale
We present the cosmological distance errors achievable using the baryon
acoustic oscillations as a standard ruler. We begin from a Fisher matrix
formalism that is upgraded from Seo & Eisenstein (2003). We isolate the
information from the baryonic peaks by excluding distance information from
other less robust sources. Meanwhile we accommodate the Lagrangian displacement
distribution into the Fisher matrix calculation to reflect the gradual loss of
information in scale and in time due to nonlinear growth, nonlinear bias, and
nonlinear redshift distortions. We then show that we can contract the
multi-dimensional Fisher matrix calculations into a 2-dimensional or even
1-dimensional formalism with physically motivated approximations. We present
the resulting fitting formula for the cosmological distance errors from galaxy
redshift surveys as a function of survey parameters and nonlinearity, which
saves us going through the 12-dimensional Fisher matrix calculations. Finally,
we show excellent agreement between the distance error estimates from the
revised Fisher matrix and the precision on the distance scale recovered from
N-body simulations.Comment: Submitted to ApJ, 21 pages, LaTe
Improving Cosmological Distance Measurements by Reconstruction of the Baryon Acoustic Peak
The baryon acoustic oscillations are a promising route to the precision
measure of the cosmological distance scale and hence the measurement of the
time evolution of dark energy. We show that the non-linear degradation of the
acoustic signature in the correlations of low-redshift galaxies is a
correctable process. By suitable reconstruction of the linear density field,
one can sharpen the acoustic peak in the correlation function or, equivalently,
restore the higher harmonics of the oscillations in the power spectrum. With
this, one can achieve better measurements of the acoustic scale for a given
survey volume. Reconstruction is particularly effective at low redshift, where
the non-linearities are worse but where the dark energy density is highest. At
z=0.3, we find that one can reduce the sample variance error bar on the
acoustic scale by at least a factor of 2 and in principle by nearly a factor of
4. We discuss the significant implications our results have for the design of
galaxy surveys aimed at measuring the distance scale through the acoustic peak.Comment: 5 pages, LaTeX. Submitted to the Astrophysical Journa
Area dependence of interlayer tunneling in strongly correlated bilayer two-dimensional electron systems at ν_T = 1
The area and perimeter dependence of the Josephson-like interlayer tunneling signature of the coherent ν_T = 1 quantum Hall phase in bilayer two-dimensional electron systems is examined. Electrostatic top gates of various sizes and shapes are used to locally define distinct ν_T = 1 regions in the same sample. Near the phase boundary with the incoherent ν_T = 1 state at large layer separation, our results demonstrate that the tunneling conductance in the coherent phase is closely proportional to the total area of the tunneling region. This implies that tunneling at ν_T = 1 is a bulk phenomenon in this regime
Transition from quantum Hall to compressible states in the second Landau level: new light on the =5/2 enigma
Quantum Hall states at filling fraction =5/2 are examined by numerical
diagonalization. Spin-polarized and -unpolarized states of systems with electrons are studied, neglecting effects of Landau level mixing. We find
that the ground state is spin polarized. It is incompressible and has a large
overlap with paired states like the Pfaffian. For a given sample, the energy
gap is about 11 times smaller than at =1/3. Evidence is presented of phase
transitions to compressible states, driven by the interaction strength at short
distance. A reinterpretation of experiments is suggested.Comment: This paper has already appeared in PRL, but has not been on the we
Dark energy and curvature from a future baryonic acoustic oscillation survey using the Lyman-alpha forest
We explore the requirements for a Lyman-alpha forest (LyaF) survey designed
to measure the angular diameter distance and Hubble parameter at 2~<z~<4 using
the standard ruler provided by baryonic acoustic oscillations (BAO). The goal
would be to obtain a high enough density of sources to probe the
three-dimensional density field on the scale of the BAO feature. A
percent-level measurement in this redshift range can almost double the Dark
Energy Task Force Figure of Merit, relative to the case with only a similar
precision measurement at z~1, if the Universe is not assumed to be flat. This
improvement is greater than the one obtained by doubling the size of the z~1
survey, with Planck and a weak SDSS-like z=0.3 BAO measurement assumed in each
case. Galaxy BAO surveys at z~1 may be able to make an effective LyaF
measurement simultaneously at minimal added cost, because the required number
density of quasars is relatively small. We discuss the constraining power as a
function of area, magnitude limit (density of quasars), resolution, and
signal-to-noise of the spectra. For example, a survey covering 2000 sq. deg.
and achieving S/N=1.8 per Ang. at g=23 (~40 quasars per sq. deg.) with an
R~>250 spectrograph is sufficient to measure both the radial and transverse
oscillation scales to 1.4% from the LyaF (or better, if fainter magnitudes and
possibly Lyman-break galaxies can be used). At fixed integration time and in
the sky-noise-dominated limit, a wider, noisier survey is generally more
efficient; the only fundamental upper limit on noise being the need to identify
a quasar and find a redshift. Because the LyaF is much closer to linear and
generally better understood than galaxies, systematic errors are even less
likely to be a problem.Comment: 18 pages including 6 figures, submitted to PR
Electron Correlations in Partially Filled Lowest and Excited Landau Levels
The electron correlations near the half-filling of the lowest and excited
Landau levels (LL's) are studied using numerical diagonalization. It is shown
that in the low lying states electrons avoid pair states with relative angular
momenta corresponding to positive anharmonicity of the interaction
pseudopotential . In the lowest LL, the super-harmonic behavior of
causes Laughlin correlations (avoiding pairs with )
and the Laughlin-Jain series of incompressible ground states. In the first
excited LL, is harmonic at short range and a different series of
incompressible states results. Similar correlations occur in the paired
Moore-Read state and in the and
states, all having small total parentage from and 3 and large
parentage from . The and states are
different from Laughlin and states and, in finite
systems, occur at a different LL degeneracy (flux). The series of Laughlin
correlated states of electron pairs at ,
, , and is proposed, although only in the
state pairing has been confirmed numerically. In the second
excited LL, is sub-harmonic at short range and (near the
half-filling) the electrons group into spatially separated larger
droplets to minimize the number of strongly repulsive pair states at and 5.Comment: 10 pages, 8 figures, submitted to PR
Tunneling Between a Pair of Parallel Hall Droplets
In this paper, we examine interwell tunneling between a pair of fractional
quantum Hall liquids in a double quantum well system in a tilted magnetic
field. Using a variational Monte Carlo method, we calculate moments of the
intra-Landau level tunneling spectrum as a function of in-plane field component
and interwell spacing . This is done for variety of
incompressible states including a pair of layers ([330]), pair of
layers ([550]), and Halperin's [331] state. The results suggest a
technique to extract interwell correlations from the tunneling spectral data.Comment: 21 pages and 8 figures (included), RevTeX, preprint no. UCSDCU
- …