411 research outputs found

    Geometrical classification of Killing tensors on bidimensional flat manifolds

    Full text link
    Valence two Killing tensors in the Euclidean and Minkowski planes are classified under the action of the group which preserves the type of the corresponding Killing web. The classification is based on an analysis of the system of determining partial differential equations for the group invariants and is entirely algebraic. The approach allows to classify both characteristic and non characteristic Killing tensors.Comment: 27 pages, 20 figures, pictures format changed to .eps, typos correcte

    Gauss-Bonnet brane gravity with a confining potential

    Get PDF
    A brane scenario is envisaged in which the mm-dimensional bulk is endowed with a Gauss-Bonnet term and localization of matter on the brane is achieved by means of a confining potential. The resulting Friedmann equations on the brane are modified by various extra terms that may be interpreted as the X-matter, providing a possible phenomenological explanation for the accelerated expansion of the universe. The age of the universe in this scenario is studied and shown to be consistent with the present observational data.Comment: 14 pages, 4 figures, to appear in PR

    On certain classes of solutions of the Weierstrass-Enneper system inducing constant mean curvature surfaces

    Full text link
    Analysis of the generalized Weierstrass-Enneper system includes the estimation of the degree of indeterminancy of the general analytic solution and the discussion of the boundary value problem. Several different procedures for constructing certain classes of solutions to this system, including potential, harmonic and separable types of solutions, are proposed. A technique for reduction of the Weierstrass-Enneper system to decoupled linear equations, by subjecting it to certain differential constraints, is presented as well. New elementary and doubly periodic solutions are found, among them kinks, bumps and multi-soliton solutions

    Distance-redshift from an optical metric that includes absorption

    Full text link
    We show that it is possible to equate the intensity reduction of a light wave caused by weak absorption with a geometrical reduction in intensity caused by a "transverse" conformal transformation of the spacetime metric in which the wave travels. We are consequently able to modify Gordon's optical metric to account for electromagnetic properties of ponderable material whose properties include both refraction and absorption. Unlike refraction alone however, including absorption requires a modification of the optical metric that depends on the eikonal of the wave itself. We derive the distance-redshift relation from the modified optical metric for Friedman-Lema\^itre-Robertson-Walker spacetimes whose cosmic fluid has associated refraction and absorption coefficients. We then fit the current supernovae data and provide an alternate explanation (other than dark energy) of the apparent acceleration of the universe.Comment: 2 figure

    On extra forces from large extra dimensions

    Full text link
    The motion of a classical test particle moving on a 4-dimensional brane embedded in an nn-dimensional bulk is studied in which the brane is allowed to fluctuate along the extra dimensions. It is shown that these fluctuations produce three different forces acting on the particle, all stemming from the effects of extra dimensions. Interpretations are then offered to describe the origin of these forces and a relationship between the 4 and nn-dimensional mass of the particle is obtained by introducing charges associated with large extra dimensions.Comment: 9 pages, no figuer

    On marginally outer trapped surfaces in stationary and static spacetimes

    Full text link
    In this paper we prove that for any spacelike hypersurface containing an untrapped barrier in a stationary spacetime satisfying the null energy condition, any marginally outer trapped surface cannot lie in the exterior region where the stationary Killing vector is timelike. In the static case we prove that any marginally outer trapped surface cannot penetrate into the exterior region where the static Killing vector is timelike. In fact, we prove these result at an initial data level, without even assuming existence of a spacetime. The proof relies on a powerful theorem by Andersson and Metzger on existence of an outermost marginally outer trapped surface.Comment: 22 pages, 3 figures; 1 reference added, 1 figure changed, other minor change

    Using 3D Stringy Gravity to Understand the Thurston Conjecture

    Full text link
    We present a string inspired 3D Euclidean field theory as the starting point for a modified Ricci flow analysis of the Thurston conjecture. In addition to the metric, the theory contains a dilaton, an antisymmetric tensor field and a Maxwell-Chern Simons field. For constant dilaton, the theory appears to obey a Birkhoff theorem which allows only nine possible classes of solutions, depending on the signs of the parameters in the action. Eight of these correspond to the eight Thurston geometries, while the ninth describes the metric of a squashed three sphere. It therefore appears that one can construct modified Ricci flow equations in which the topology of the geometry is encoded in the parameters of an underlying field theory.Comment: 17 pages, Late

    On separable Fokker-Planck equations with a constant diagonal diffusion matrix

    Full text link
    We classify (1+3)-dimensional Fokker-Planck equations with a constant diagonal diffusion matrix that are solvable by the method of separation of variables. As a result, we get possible forms of the drift coefficients B1(x⃗),B2(x⃗),B3(x⃗)B_1(\vec x),B_2(\vec x),B_3(\vec x) providing separability of the corresponding Fokker-Planck equations and carry out variable separation in the latter. It is established, in particular, that the necessary condition for the Fokker-Planck equation to be separable is that the drift coefficients B⃗(x⃗)\vec B(\vec x) must be linear. We also find the necessary condition for R-separability of the Fokker-Planck equation. Furthermore, exact solutions of the Fokker-Planck equation with separated variables are constructedComment: 20 pages, LaTe

    Asymptotic expansions of the Cotton-York tensor on slices of stationary spacetimes

    Full text link
    We discuss expansions for the Cotton-York tensor near infinity for arbitrary slices of stationary spacetimes. From these expansions it follows directly that a necessary condition for the existence of conformally flat slices in stationary solutions is the vanishing of a certain quantity of quadrupolar nature (obstruction). The obstruction is nonzero for the Kerr solution. Thus, the Kerr metric admits no conformally flat slices. An analysis of higher orders in the expansions of the Cotton-York tensor for solutions such that the obstruction vanishes suggests that the only stationary solution admitting conformally flat slices are the Schwarzschild family of solutions.Comment: Revised version to appear in Class. Quantum Grav. with 13 pages. Section 2 regarding multipolar expansions of stationary spacetimes largely expanded. A Maple script demonstrating the calculations in the axially symmetric case is available upon request from the autho

    Covariant perturbations of domain walls in curved spacetime

    Get PDF
    A manifestly covariant equation is derived to describe the perturbations in a domain wall on a given background spacetime. This generalizes recent work on domain walls in Minkowski space and introduces a framework for examining the stability of relativistic bubbles in curved spacetimes.Comment: 15 pages,ICN-UNAM-93-0
    • 

    corecore