714 research outputs found

    Colliding Wave Solutions in a Symmetric Non-metric Theory

    Full text link
    A method is given to generate the non-linear interaction (collision) of linearly polarized gravity coupled torsion waves in a non-metric theory. Explicit examples are given in which strong mutual focussing of gravitational waves containing impulsive and shock components coupled with torsion waves does not result in a curvature singularity. However, the collision of purely torsion waves displays a curvature singularity in the region of interaction.Comment: 16 pages, 1 ps figure, It will appear in Int. Jour. of Theor. Physic

    Vectorial Ribaucour Transformations for the Lame Equations

    Get PDF
    The vectorial extension of the Ribaucour transformation for the Lame equations of orthogonal conjugates nets in multidimensions is given. We show that the composition of two vectorial Ribaucour transformations with appropriate transformation data is again a vectorial Ribaucour transformation, from which it follows the permutability of the vectorial Ribaucour transformations. Finally, as an example we apply the vectorial Ribaucour transformation to the Cartesian background.Comment: 12 pages. LaTeX2e with AMSLaTeX package

    U(1)-invariant membranes: the geometric formulation, Abel and pendulum differential equations

    Full text link
    The geometric approach to study the dynamics of U(1)-invariant membranes is developed. The approach reveals an important role of the Abel nonlinear differential equation of the first type with variable coefficients depending on time and one of the membrane extendedness parameters. The general solution of the Abel equation is constructed. Exact solutions of the whole system of membrane equations in the D=5 Minkowski space-time are found and classified. It is shown that if the radial component of the membrane world vector is only time dependent then the dynamics is described by the pendulum equation.Comment: 19 pages, v3 published versio

    The WKB Approximation without Divergences

    Get PDF
    In this paper, the WKB approximation to the scattering problem is developed without the divergences which usually appear at the classical turning points. A detailed procedure of complexification is shown to generate results identical to the usual WKB prescription but without the cumbersome connection formulas.Comment: 13 pages, TeX file, to appear in Int. J. Theor. Phy

    Classical and quantum three-dimensional integrable systems with axial symmetry

    Full text link
    We study the most general form of a three dimensional classical integrable system with axial symmetry and invariant under the axis reflection. We assume that the three constants of motion are the Hamiltonian, HH, with the standard form of a kinetic part plus a potential dependent on the position only, the zz-component of the angular momentum, LL, and a Hamiltonian-like constant, H~\widetilde H, for which the kinetic part is quadratic in the momenta. We find the explicit form of these potentials compatible with complete integrability. The classical equations of motion, written in terms of two arbitrary potential functions, is separated in oblate spheroidal coordinates. The quantization of such systems leads to a set of two differential equations that can be presented in the form of spheroidal wave equations.Comment: 17 pages, 3 figure

    Prolongations of Geometric Overdetermined Systems

    Full text link
    We show that a wide class of geometrically defined overdetermined semilinear partial differential equations may be explicitly prolonged to obtain closed systems. As a consequence, in the case of linear equations we extract sharp bounds on the dimension of the solution space.Comment: 22 pages. In the second version, a comparison with the classical theory of prolongations was added. In this third version more details were added concerning our construction and especially the use of Kostant's computation of Lie algebra cohomolog

    Autonomous three dimensional Newtonian systems which admit Lie and Noether point symmetries

    Full text link
    We determine the autonomous three dimensional Newtonian systems which admit Lie point symmetries and the three dimensional autonomous Newtonian Hamiltonian systems, which admit Noether point symmetries. We apply the results in order to determine the two dimensional Hamiltonian dynamical systems which move in a space of constant non-vanishing curvature and are integrable via Noether point symmetries. The derivation of the results is geometric and can be extended naturally to higher dimensions.Comment: Accepted for publication in Journal of Physics A: Math. and Theor.,13 page

    Ricci identities in higher dimensions

    Get PDF
    We explore connections between geometrical properties of null congruences and the algebraic structure of the Weyl tensor in n>4 spacetime dimensions. First, we present the full set of Ricci identities on a suitable "null" frame, thus completing the extension of the Newman-Penrose formalism to higher dimensions. Then we specialize to geodetic null congruences and study specific consequences of the Sachs equations. These imply, for example, that Kundt spacetimes are of type II or more special (like for n=4) and that for odd n a twisting geodetic WAND must also be shearing (in contrast to the case n=4).Comment: 8 pages. v2: typo corrected between Propositions 2 and 3. v3: typo in the last term in the first line of (11f) corrected, missing term on the r.h.s. of (11p) added, first sentence between Propositions 2 and 3 slightly change

    Axial symmetry and conformal Killing vectors

    Get PDF
    Axisymmetric spacetimes with a conformal symmetry are studied and it is shown that, if there is no further conformal symmetry, the axial Killing vector and the conformal Killing vector must commute. As a direct consequence, in conformally stationary and axisymmetric spacetimes, no restriction is made by assuming that the axial symmetry and the conformal timelike symmetry commute. Furthermore, we prove that in axisymmetric spacetimes with another symmetry (such as stationary and axisymmetric or cylindrically symmetric spacetimes) and a conformal symmetry, the commutator of the axial Killing vector with the two others mush vanish or else the symmetry is larger than that originally considered. The results are completely general and do not depend on Einstein's equations or any particular matter content.Comment: 15 pages, Latex, no figure

    BTZ black hole from (3+1) gravity

    Get PDF
    We propose an approach for constructing spatial slices of (3+1) spacetimes with cosmological constant but without a matter content, which yields (2+1) vacuum with Λ\Lambda solutions. The reduction mechanism from (3+1) to (2+1) gravity is supported on a criterion in which the Weyl tensor components are required to vanish together with a dimensional reduction via an appropriate foliation. By using an adequate reduction mechanism from the Pleba\'nski-Carter[A] solution in (3+1) gravity, the (2+1) BTZ solution can be obtained.Comment: 4 pages, Late
    corecore