9,491 research outputs found
Photodisintegration of light nuclei for testing a correlated realistic interaction in the continuum
An exact calculation of the photodisintegration cross section of 3H, 3He and
4He is performed using as interaction the correlated Argonne V18 potential,
constructed within the Unitary Correlation Operator Method (VUCOM).
Calculations are carried out using the
Lorentz Integral Transform method in conjunction with an hyperspherical
harmonics basis expansion. A comparison with other realistic potentials and
with available experimental data is discussed. The VUCOM potential leads to a
very similar description of the cross section as the Argonne V18 interaction
with the inclusion of the Urbana IX three-body force for photon energies 45< w
< 120 MeV, while larger differences are found close to threshold.Comment: 9 pages, 6 figure
Ions in Fluctuating Channels: Transistors Alive
Ion channels are proteins with a hole down the middle embedded in cell
membranes. Membranes form insulating structures and the channels through them
allow and control the movement of charged particles, spherical ions, mostly
Na+, K+, Ca++, and Cl-. Membranes contain hundreds or thousands of types of
channels, fluctuating between open conducting, and closed insulating states.
Channels control an enormous range of biological function by opening and
closing in response to specific stimuli using mechanisms that are not yet
understood in physical language. Open channels conduct current of charged
particles following laws of Brownian movement of charged spheres rather like
the laws of electrodiffusion of quasi-particles in semiconductors. Open
channels select between similar ions using a combination of electrostatic and
'crowded charge' (Lennard-Jones) forces. The specific location of atoms and the
exact atomic structure of the channel protein seems much less important than
certain properties of the structure, namely the volume accessible to ions and
the effective density of fixed and polarization charge. There is no sign of
other chemical effects like delocalization of electron orbitals between ions
and the channel protein. Channels play a role in biology as important as
transistors in computers, and they use rather similar physics to perform part
of that role. Understanding their fluctuations awaits physical insight into the
source of the variance and mathematical analysis of the coupling of the
fluctuations to the other components and forces of the system.Comment: Revised version of earlier submission, as invited, refereed, and
published by journa
Ground State Spin Structure of Strongly Interacting Disordered 1D Hubbard Model
We study the influence of on-site disorder on the magnetic properties of the
ground state of the infinite U 1D Hubbard model. We find that the ground state
is not ferromagnetic. This is analyzed in terms of the algebraic structure of
the spin dependence of the Hamiltonian. A simple explanation is derived for the
1/N periodicity in the persistent current for this model.Comment: 3 pages, no figure
Multilayer studies and applications in template bi-epitaxial DC SQUIDS
Multilayer deposition for the creation of a well-defined grain boundary, based on different in-plane orientations of c-axis oriented thin YBa2O2Cu3O7-δ layers on a single substrate, has been performed on three different kinds of substrates: (1102)-oriented Al2O3 , (100) SrTiO3, and (100) MgO. The multilayers consist of combinations of SrTiO3, MgO, CeO2, and YBa2O2Cu3O7-δ. The YBa 2O2Cu3O7-δ top layers on (1102) Al2O3 and (100) SrTiO3 were polycrystalline. Josephson junctions and DC superconducting quantum interference devices (SQUIDs) have been structured in the layers on MgO. Shapiro steps were observed. The Jcρn-product of the junctions at 4.2 K is on the order of 1 mV. The critical current decreases in good approximation linearly with increasing temperature, whereas the normal state resistance is nearly temperature independent. Voltage modulation was observed at temperatures up to 77 K
The nucleus as a fluid of skyrmions: Energy levels and nucleon properties in the medium
A model of a fluid of skyrmions coupled to a scalar and to the \o meson
mean fields is developed. The central and spin-orbit potentials of a skyrmion
generated by the fields predict correct energy levels in selected closed shell
nuclei. The effect of the meson fields on the properties of skyrmions in nuclei
is investigated.Comment: Latex format, 6 figures, Journal of Physics G, to be publishe
The quantum probability ranking principle for information retrieval
While the Probability Ranking Principle for Information Retrieval provides the basis for formal models, it makes a very strong assumption regarding the dependence between documents. However, it has been observed that in real situations this assumption does not always hold. In this paper we propose a reformulation of the Probability Ranking Principle based on quantum theory. Quantum probability theory naturally includes interference effects between events. We posit that this interference captures the dependency between the judgement of document relevance. The outcome is a more sophisticated principle, the Quantum Probability Ranking Principle, that provides a more sensitive ranking which caters for interference/dependence between documents’ relevanc
Probing nuclear skins and halos with elastic electron scattering
I investigate the elastic electron scattering off nuclei far from the
stability line. The effects of the neutron and proton skins and halos on the
differential cross sections are explored. Examples are given for the charge
distribution in Sn isotopes and its relation to the neutron skin. The neutron
halo in Li and the proton halo in B are also investigated.
Particular interest is paid to the inverse scattering problem and its
dependence on the experimental precision. These studies are of particular
interest for the upcoming electron ion colliders at the GSI and RIKEN
facilities.Comment: 27 pages, 9 figures, accepted for publication in J. Phys.
- …