52 research outputs found

    Hypothetical exposure limits for oil-based metalworking fluids and cardiovascular mortality in a cohort of autoworkers: Structural accelerated failure time models in a public health framework.

    Get PDF
    Occupational exposure to aerosolized particles of oil-based metalworking fluid was recently linked to deaths from ischemic heart disease. The current recommended exposure limits might be insufficient. Studying cardiovascular mortality is challenging because symptoms can induce sicker workers to reduce their exposure, causing healthy-worker survivor bias. G-estimation of accelerated failure time models reduces this bias and permits comparison of multiple exposure interventions. Michigan autoworkers from the United AutoWorkers-General Motors cohort (n = 38,666) were followed from 1941 through 1994. Separate binary variables indicated whether annual exposure exceeded a series of potential limits. Separate g-estimation analyses for each limit yielded the total number of life-years that could have been saved among persons who died from specific cardiovascular causes by enforcing that exposure limit. Banning oil-based fluids would have saved an estimated 4,003 (95% confidence interval: 2,200, 5,807) life-years among those who died of ischemic heart disease. Estimates for cardiovascular disease overall, acute myocardial infarction, and cerebrovascular disease were 3,500 (95% confidence interval: 1,350, 5,651), 2,932 (95% confidence interval: 1,587, 4,277), and 917 (95% confidence interval: -80, 1,913) life-years, respectively. A limit of 0.01 mg/m(3) would have had a similar impact on cerebrovascular disease but one only half as great on ischemic heart disease. Analyses suggest that limiting exposure to metalworking fluids could have saved many life-years lost to cardiovascular diseases in this cohort

    Relationships between quantitative and reproductive fitness traits in animals

    No full text
    The relationships between quantitative and reproductive fitness traits in animals are of general biological importance for the development of population genetic models and our understanding of evolution, and of great direct economical importance in the breeding of farm animals. Two well investigated quantitative traits—body weight (BW) and litter size (LS)—were chosen as the focus of our review. The genetic relationships between them are reviewed in fishes and several mammalian species. We have focused especially on mice where data are most abundant. In mice, many individual genes influencing these traits have been identified, and numerous quantitative trait loci (QTL) located. The extensive data on both unselected and selected mouse populations, with some characterized for more than 100 generations, allow a thorough investigation of the dynamics of this relationship during the process of selection. Although there is a substantial positive genetic correlation between both traits in unselected populations, caused mainly by the high correlation between BW and ovulation rate, that correlation apparently declines during selection and therefore does not restrict a relatively independent development of both traits. The importance of these findings for overall reproductive fitness and its change during selection is discussed
    corecore