9 research outputs found

    Improving surgical techniques and functional outcome in total knee arthroplasty

    Get PDF
    acceptedVersio

    No detrimental effect of ligament balancing on functional outcome after total knee arthroplasty: a prospective cohort study on 129 mechanically aligned knees with 3 years’ follow-up

    No full text
    Background and purpose — In the classical mechanical alignment technique, ligament balancing is considered a prerequisite for good function and endurance in total knee arthroplasty (TKA). However, it has been argued that ligament balancing may have a negative effect on knee function, and some authors advocate anatomic or kinematic alignment in order to reduce the extent of ligament releases. The effect of the trauma induced by ligament balancing on functional outcome is unknown; therefore, the aim of this study was to investigate this effect. Patients and methods — 129 knees (73 women) were investigated. Mean age was 69 years (42–82), and mean BMI was 29 (20–43). Preoperatively 103 knees had a varus deformity, 21 knees had valgus deformity, and 5 knees were neutral. The primary outcome measure was the Knee injury and Osteoarthritis Outcome Score (KOOS). Secondary outcome measures were the Oxford Knee Score (OKS) and patient satisfaction (VAS). All ligament releases were registered intraoperatively and outcome at 3 years’ follow-up in knees with and without ligament balancing was compared Results — 86 knees were ligament balanced and 43 knees were not. Ligament-balanced varus knees had more preoperative deformity than varus knees without ligament balancing (p = 0.01). There were no statistically significant differences in outcomes between ligament-balanced and non-ligament-balanced knees at 3 years’ follow-up. No correlation was found between increasing numbers of soft tissue structures released and outcome. Interpretation — We did not find any negative effect of the trauma induced by ligament balancing on knee function after 3 years

    A simple method for accurate rotational positioning of the femoral component in total knee arthroplasty: A prospective study on 80 knees with 3 years’ follow-up with CT scans and functional outcome

    No full text
    Background and purpose — There are many techniques for placing the femoral component in correct rotational alignment in total knee arthroplasty (TKA), but only a few have been tested against the supposed gold standard, rotation determined by postoperative computed tomography (CT). We evaluated the accuracy and variability of a new method, the clinical rotational axis (CRA) method, and assessed the association between the CRA and knee function. Patients and methods — The CRA is a line derived from clinical judgement of information from the surgical transepicondylar axis, the anteroposterior axis, and the posterior condylar line. The CRA was used to guide the rotational positioning of the femoral component in 80 knees (46 female). At 3 years follow-up, the rotation of the femoral component was compared with the CT-derived surgical transepicondylar axis (CTsTEA) by 3 observers. Functional outcome was assessed with the Knee Injury and Osteoarthritis Outcome Score (KOOS), the Oxford Knee Score (OKS) and patient satisfaction (VAS). Results — The mean (95% CI) rotational deviation of the femoral component from the CTsTEA was 0.2° (–0.15°–0.55°). The standard deviation (95% CI) was 1.58° (1.36°–1.85°) and the range was from 3.7° internal rotation to 3.7° external rotation. No statistically significant association was found between femoral component rotation and KOOS, OKS, or VAS. Interpretation — The CRA method was found to be accurate with a low grade of variability

    Patellar resurfacing in total knee arthroplasty: functional outcome differs with different outcome scores: A randomized, double-blind study of 129 knees with 3 years of follow-up

    No full text
    Background and purpose — Recent research on outcomes after total knee arthroplasty (TKA) has raised the question of the ability of traditional outcome measures to distinguish between treatments. We compared functional outcomes in patients undergoing TKA with and without patellar resurfacing, using the knee injury and osteoarthritis outcome score (KOOS) as the primary outcome and 3 traditional outcome measures as secondary outcomes. Patients and methods — 129 knees in 115 patients (mean age 70 (42–82) years; 67 female) were evaluated in this single-center, randomized, double-blind study. Data were recorded preoperatively, at 1 year, and at 3 years, and were assessed using repeated-measures mixed models. Results — The mean subscores for the KOOS after surgery were statistically significantly in favor of patellar resurfacing: sport/recreation, knee-related quality of life, pain, and symptoms. No statistically significant differences between the groups were observed with the Knee Society clinical rating system, with the Oxford knee score, and with visual analog scale (VAS) for patient satisfaction. Interpretation — In the present study, the KOOS—but no other outcome measure used—indicated that patellar resurfacing may be beneficial in TKA

    A novel instrument for ligament balancing: a biomechanical study in human cadaveric knees

    No full text
    Abstract Purpose Ligament balancing is a prerequisite for good function and survival in total knee arthroplasty (TKA). Various balancing techniques exist, but none have shown superior results. The pie‐crusting technique by Bellemans of the medial collateral ligament is commonly utilized; however, it can be difficult to achieve repeatable ligament lengthening with this technique. Therefore, we invented a novel instrument to standardize the pie‐crusting technique of the superficial and deep medial collateral ligament (hereafter MCL). The purpose was to examine if pie‐crusting with the instrument could produce repeatable ligament lengthening. Methods The MCL was isolated in 16 human cadaveric knees, and subjected to axial tension. The instrument was composed of a specific grid of holes in rows, used to guide sequential pie‐crusting puncturing of the MCL with a Ø1.6 mm end‐cutting cannula. Ligament lengthening was measured after each row of punctures. Regression analysis was performed on the results. Results Mean lengthening ± SD in human cadaveric MCL for puncturing of row 1 in the instrument was 0.06 ± 0.09 mm, 0.06 ± 0.04 mm for row 2, 0.09 ± 0.08 mm for row 3, 0.06 ± 0.05 mm for row 4 and 0.06 ± 0.04 mm for row 5, giving a mean total lengthening of 0.33 ± 0.20 mm. Linear regression revealed that MCLs were repeatably lengthened by 0.07 mm per row when punctured using the instrument. Conclusions MCLs showed linear lengthening in human cadavers for subsequent use of the instrument. Our instrument shows promising results for repeatable ligament lengthening
    corecore