13 research outputs found
First generation of optical fiber phase reference distribution system for TESLA
This report describes the design of a phase stable Fiber Optic (FO) link for the TESLA technology based projects. The concept of this long optical link, with a feedback system suppressing long term drifts of the RF signal phase is described. Stability requirements are given and most important design issues affecting the system performance are discussed. The technical design issues of system components like laser transmitter and optical phase shifter are described in detail. Last sections depict the software developed for system control and experimental results obtained after system was assembled
Planning and Controlling of the Cold Accelerator Sections Installation in XFEL
The installation of the main linear accelerator in the 2 km European XFEL (X-Ray Free-Electron Laser) tunnel is currently under way. The accelerator consists of nine so-called cryo-strings. A typical cryo-string comprises 12 accelerator modules, which will be fed by three RFstations. Furthermore, the installation of electronic racks, cables, power and water supply etc. takes place.To enable a most effective installation of the accelerator components, planning and controlling methods, which had first been developed for the RF system work package, were adapted for the entire main linear accelerator. As a first step, a process plan was developed in cooperation with the work package leaders. On the basis of this plan, the installation process is promoted by several measures: The status of the installation is precisely registered by weekly queries which enable monitoring of the progress and feedback to everyone involved. With this information at hand, the installation process can be controlled and plan deviations can be corrected. Furthermore, the experience gained at one cryo-string is used to optimise the plan for the next cryo-string installation
Installation management for the European XFEL main accelerator
By end of 2016, the main accelerator of the European XFEL was completed. To build this complex machine in a minimum of time, certain management methods were introduced in mid 2015, which accelerated the installation process substantially. In the following 64 weeks additional 84 % of the main accelerator were set up. This was possible due to an improved planning, the reinforcement of two teams as well as a permanent controlling and optimizing of the installation process. In this paper, the installation process from July 2015 to end 2016 and the measures which speeded up the workflow are described