14 research outputs found

    Translational readthrough of ciliopathy genes BBS2 and ALMS1 restores protein, ciliogenesis and function in patient fibroblasts

    Get PDF
    Background: Ciliary dysfunction underlies a range of genetic disorders collectively termed ciliopathies, for which there are no treatments available. Bardet-Biedl syndrome (BBS) is characterised by multisystemic involvement, including rod-cone dystrophy and renal abnormalities. Together with Alström syndrome (AS), they are known as the ‘obesity ciliopathies’ due to their common phenotype. Nonsense mutations are responsible for approximately 11% and 40% of BBS and AS cases, respectively. Translational readthrough inducing drugs (TRIDs) can restore full-length protein bypassing in-frame premature termination codons, and are a potential therapeutic approach for nonsense-mediated ciliopathies. Methods: Patient fibroblasts harbouring nonsense mutations from two different ciliopathies (Bardet-Biedl Syndrome and Alström Syndrome) were treated with PTC124 (ataluren) or amlexanox. Following treatment, gene expression, protein levels and ciliogenesis were evaluated. The expression of intraflagellar transport protein IFT88 and G-protein coupled receptor SSTR3 was investigated as a readout of ciliary function. Findings: mRNA expression was significantly increased in amlexanox-treated patient fibroblasts, and full-length BBS2 or ALMS1 protein expression was restored in PTC124- and amlexanox-treated fibroblasts. Treatment with TRIDs significantly improved ciliogenesis defects in BBS2Y24*/R275* fibroblasts. Treatment recovered IFT88 expression and corrected SSTR3 mislocalisation in BBS2Y24*/R275* and ALMS1S1645*/S1645* fibroblasts, suggesting rescue of ciliary function. Interpretation: The recovery of full-length BBS2 and ALMS1 expression and correction of anatomical and functional ciliary defects in BBS2Y24*/R275* and ALMS1S1645*/S1645* fibroblasts suggest TRIDs are a potential therapeutic option for the treatment of nonsense-mediated ciliopathies

    Efficient embryoid-based method to improve generation of optic vesicles from human induced pluripotent stem cells [version 1; peer review: 2 approved]

    Get PDF
    Animal models have provided many insights into ocular development and disease, but they remain suboptimal for understanding human oculogenesis. Eye development requires spatiotemporal gene expression patterns and disease phenotypes can differ significantly between humans and animal models, with patient-associated mutations causing embryonic lethality reported in some animal models. The emergence of human induced pluripotent stem cell (hiPSC) technology has provided a new resource for dissecting the complex nature of early eye morphogenesis through the generation of three-dimensional (3D) cellular models. By using patient-specific hiPSCs to generate in vitro optic vesicle-like models, we can enhance the understanding of early developmental eye disorders and provide a pre-clinical platform for disease modelling and therapeutics testing. A major challenge of in vitro optic vesicle generation is the low efficiency of differentiation in 3D cultures. To address this, we adapted a previously published protocol of retinal organoid differentiation to improve embryoid body formation using a microwell plate. Established morphology, upregulated transcript levels of known early eye-field transcription factors and protein expression of standard retinal progenitor markers confirmed the optic vesicle/presumptive optic cup identity of in vitro models between day 20 and 50 of culture. This adapted protocol is relevant to researchers seeking a physiologically relevant model of early human ocular development and disease with a view to replacing animal models

    Generation of two human iPSC lines from patients with autosomal dominant retinitis pigmentosa (UCLi014-A) and autosomal recessive Leber congenital amaurosis (UCLi015-A), associated with RDH12 variants

    Get PDF
    Induced pluripotent stem cell (iPSC) lines were generated from two patients with RDH12 variants. UCLi014-A is from a patient with heterozygous frameshift mutation c.759del p.(Phe254Leufs*24), associated with autosomal dominant retinitis pigmentosa. UCLi015-A is from a patient with homozygous missense mutation c.619A > G p.(Asn207Asp), associated with Leber congenital amaurosis. Fibroblasts were derived from skin biopsies and reprogrammed using integration free episomal reprogramming plasmids. The iPSC lines expressed pluripotency markers, exhibited differentiation potential in vitro and displayed normal karyotypes. These cell lines will act as a tool for disease modelling, enabling comparison of disease mechanisms, identification of therapeutic targets and drug screening

    Generation of human iPSC line (UCLi013-A) from a patient with microphthalmia and aniridia, carrying a heterozygous missense mutation c.372C>A p.(Asn124Lys) in PAX6

    Get PDF
    A human induced pluripotent stem cell (hiPSC) line (UCLi013-A) was generated from fibroblast cells of a 34-year-old donor with multiple ocular conditions including severe microphthalmia and aniridia. The patient had a heterozygous missense mutation in PAX6 c.372C>A, p.(Asn124Lys), validated in the fibroblasts through Sanger sequencing. Fibroblasts derived from a skin biopsy were reprogrammed using integration free episomal reprogramming. The established iPSC line was found to express pluripotency markers, exhibit differentiation potential in vitro and display a normal karyotype. This cell line will act as a tool for disease modelling of microphthalmia and aniridia, identification of therapeutic targets and drug screening

    Additional Common Polymorphisms in the PON Gene Cluster Predict PON1 Activity but Not Vascular Disease

    Get PDF
    Background. Paraoxonase 1 (PON1) enzymatic activity has been consistently predictive of cardiovascular disease, while the genotypes at the four functional polymorphisms at PON1 have not. The goal of this study was to identify additional variation at the PON gene cluster that improved prediction of PON1 activity and determine if these variants predict carotid artery disease (CAAD). Methods. We considered 1,328 males in a CAAD cohort. 51 tagging single-nucleotide polymorphisms (tag SNPs) across the PON cluster were evaluated to determine their effects on PON1 activity and CAAD status. Results. Six SNPs (four in PON1 and one each in PON2/3) predicted PON1 arylesterase (AREase) activity, in addition to the four previously known functional SNPs. In total, the 10 SNPs explained 30.1% of AREase activity, 5% of which was attributable to the six identified predictive SNPs. We replicate rs854567 prediction of 2.3% of AREase variance, the effects of rs3917510, and a PON3 haplotype that includes rs2375005. While AREase activity strongly predicted CAAD, none of the 10 SNPs predicting AREase predicted CAAD. Conclusions. This study identifies new genetic variants that predict additional PON1 AREase activity. Identification of SNPs associated with PON1 activity is required when evaluating the many phenotypes associated with genetic variation near PON1

    Identification of 4 novel human ocular coloboma genes ANK3, BMPR1B, PDGFRA, and CDH4 through evolutionary conserved vertebrate gene analysis

    Get PDF
    Purpose: Ocular coloboma arises from genetic or environmental perturbations that inhibit optic fissure (OF) fusion during early eye development. Despite high genetic heterogeneity, 70% to 85% of patients remain molecularly undiagnosed. In this study, we have identified new potential causative genes using cross-species comparative meta-analysis. Methods: Evolutionarily conserved differentially expressed genes were identified through in silico analysis, with in situ hybridization, gene knockdown, and rescue performed to confirm spatiotemporal gene expression and phenotype. Interrogation of the 100,000 Genomes Project for putative pathogenic variants was performed. Results: Nine conserved differentially expressed genes between zebrafish and mouse were identified. Expression of zebrafish ank3a, bmpr1ba/b, cdh4, and pdgfaa was localized to the OF, periocular mesenchyme cells, or ciliary marginal zone, regions traversed by the OF. Knockdown of ank3, bmpr1b, and pdgfaa revealed a coloboma and/or microphthalmia phenotype. Novel pathogenic variants in ANK3, BMPR1B, PDGFRA, and CDH4 were identified in 8 unrelated coloboma families. We showed BMPR1B rescued the knockdown phenotype but variant messenger RNAs failed, providing evidence of pathogenicity. Conclusion: We show the utility of cross-species meta-analysis to identify several novel coloboma disease-causing genes. There is a potential to increase the diagnostic yield for new and unsolved patients while adding to our understanding of the genetic basis of OF morphogenesis

    The Use of Induced Pluripotent Stem Cells as a Model for Developmental Eye Disorders

    Get PDF
    Approximately one-third of childhood blindness is attributed to developmental eye disorders, of which 80% have a genetic cause. Eye morphogenesis is tightly regulated by a highly conserved network of transcription factors when disrupted by genetic mutations can result in severe ocular malformation. Human-induced pluripotent stem cells (hiPSCs) are an attractive tool to study early eye development as they are more physiologically relevant than animal models, can be patient-specific and their use does not elicit the ethical concerns associated with human embryonic stem cells. The generation of self-organizing hiPSC-derived optic cups is a major advancement to understanding mechanisms of ocular development and disease. Their development in vitro has been found to mirror that of the human eye and these early organoids have been used to effectively model microphthalmia caused by a VSX2 variant. hiPSC-derived optic cups, retina, and cornea organoids are powerful tools for future modeling of disease phenotypes and will enable a greater understanding of the pathophysiology of many other developmental eye disorders. These models will also provide an effective platform for identifying molecular therapeutic targets and for future clinical applications

    Generation of two human control iPS cell lines (UCLi016-A and UCLi017-A) from healthy donors with no known ocular conditions

    No full text
    Two human induced pluripotent stem cell (hiPSC) lines (UCLi016-A and UCLi017-A) were generated from fibroblast cells of 23- and 34-year-old healthy male donors with no known ocular conditions. Fibroblast cells were derived from skin biopsies and reprogrammed using integration free episomal reprogramming. The established iPSC lines were found to express pluripotency markers, exhibit differentiation potential in vitro and display a normal karyotype. These cell lines will act as a control lines for researchers studying ocular diseases

    Generation of human iPSC line (UCLi013-A) from a patient with microphthalmia and aniridia, carrying a heterozygous missense mutation c.372C>A p.(Asn124Lys) in PAX6

    Get PDF
    A human induced pluripotent stem cell (hiPSC) line (UCLi013-A) was generated from fibroblast cells of a 34-year-old donor with multiple ocular conditions including severe microphthalmia and aniridia. The patient had a heterozygous missense mutation in PAX6 c.372C>A, p.(Asn124Lys), validated in the fibroblasts through Sanger sequencing. Fibroblasts derived from a skin biopsy were reprogrammed using integration free episomal reprogramming. The established iPSC line was found to express pluripotency markers, exhibit differentiation potential in vitro and display a normal karyotype. This cell line will act as a tool for disease modelling of microphthalmia and aniridia, identification of therapeutic targets and drug screening
    corecore