143 research outputs found
A real Lorentz-FitzGerald contraction
Many condensed matter systems are such that their collective excitations at
low energies can be described by fields satisfying equations of motion formally
indistinguishable from those of relativistic field theory. The finite speed of
propagation of the disturbances in the effective fields (in the simplest
models, the speed of sound) plays here the role of the speed of light in
fundamental physics. However, these apparently relativistic fields are immersed
in an external Newtonian world (the condensed matter system itself and the
laboratory can be considered Newtonian, since all the velocities involved are
much smaller than the velocity of light) which provides a privileged coordinate
system and therefore seems to destroy the possibility of having a perfectly
defined relativistic emergent world. In this essay we ask ourselves the
following question: In a homogeneous condensed matter medium, is there a way
for internal observers, dealing exclusively with the low-energy collective
phenomena, to detect their state of uniform motion with respect to the medium?
By proposing a thought experiment based on the construction of a
Michelson-Morley interferometer made of quasi-particles, we show that a real
Lorentz-FitzGerald contraction takes place, so that internal observers are
unable to find out anything about their `absolute ' state of motion. Therefore,
we also show that an effective but perfectly defined relativistic world can
emerge in a fishbowl world situated inside a Newtonian (laboratory) system.
This leads us to reflect on the various levels of description in physics, in
particular regarding the quest towards a theory of quantum gravity.Comment: 6 pages, no figures. Minor changes reflect published versio
Einstein's quantum theory of the monatomic ideal gas: non-statistical arguments for a new statistics
In this article, we analyze the third of three papers, in which Einstein
presented his quantum theory of the ideal gas of 1924-1925. Although it failed
to attract the attention of Einstein's contemporaries and although also today
very few commentators refer to it, we argue for its significance in the context
of Einstein's quantum researches. It contains an attempt to extend and exhaust
the characterization of the monatomic ideal gas without appealing to
combinatorics. Its ambiguities illustrate Einstein's confusion with his initial
success in extending Bose's results and in realizing the consequences of what
later became to be called Bose-Einstein statistics. We discuss Einstein's
motivation for writing a non-combinatorial paper, partly in response to
criticism by his friend Ehrenfest, and we paraphrase its content. Its arguments
are based on Einstein's belief in the complete analogy between the
thermodynamics of light quanta and of material particles and invoke
considerations of adiabatic transformations as well as of dimensional analysis.
These techniques were well-known to Einstein from earlier work on Wien's
displacement law, Planck's radiation theory, and the specific heat of solids.
We also investigate the possible role of Ehrenfest in the gestation of the
theory.Comment: 57 pp
A spatially-VSL gravity model with 1-PN limit of GRT
A scalar gravity model is developed according the 'geometric conventionalist'
approach introduced by Poincare (Einstein 1921, Poincare 1905, Reichenbach
1957, Gruenbaum1973). In principle this approach allows an alternative
interpretation and formulation of General Relativity Theory (GRT), with
distinct i) physical congruence standard, and ii) gravitation dynamics
according Hamilton-Lagrange mechanics, while iii) retaining empirical
indistinguishability with GRT. In this scalar model the congruence standards
have been expressed as gravitationally modified Lorentz Transformations
(Broekaert 2002). The first type of these transformations relate quantities
observed by gravitationally 'affected' (natural geometry) and 'unaffected'
(coordinate geometry) observers and explicitly reveal a spatially variable
speed of light (VSL). The second type shunts the unaffected perspective and
relates affected observers, recovering i) the invariance of the locally
observed velocity of light, and ii) the local Minkowski metric (Broekaert
2003). In the case of a static gravitation field the model retrieves the
phenomenology implied by the Schwarzschild metric. The case with proper source
kinematics is now described by introduction of a 'sweep velocity' field w: The
model then provides a hamiltonian description for particles and photons in full
accordance with the first Post-Newtonian approximation of GRT (Weinberg 1972,
Will 1993).Comment: v1: 11 pages, GR17 conf. paper, Dublin 2004, v2: WEP issue solved,
section on acceleration transformation added, text improved, more references,
same results, v3: typos removed, footnotes, added and references updated, v4:
appendix added, improved tex
Entanglement, quantum phase transition and scaling in XXZ chain
Motivated by recent development in quantum entanglement, we study relations
among concurrence , SU(2) algebra, quantum phase transition and
correlation length at the zero temperature for the XXZ chain. We find that at
the SU(2) point, the ground state possess the maximum concurrence. When the
anisotropic parameter is deformed, however, its value decreases. Its
dependence on scales as in the XY metallic
phase and near the critical point (i.e. ) of the Ising-like
insulating phase. We also study the dependence of on the correlation length
, and show that it satisfies near the critical point. For
different size of the system, we show that there exists a universal scaling
function of with respect to the correlation length .Comment: 4 pages, 3 figures. to appear in Phys. Rev.
Gravitation, electromagnetism and cosmological constant in purely affine gravity
The Ferraris-Kijowski purely affine Lagrangian for the electromagnetic field,
that has the form of the Maxwell Lagrangian with the metric tensor replaced by
the symmetrized Ricci tensor, is dynamically equivalent to the metric
Einstein-Maxwell Lagrangian, except the zero-field limit, for which the metric
tensor is not well-defined. This feature indicates that, for the
Ferraris-Kijowski model to be physical, there must exist a background field
that depends on the Ricci tensor. The simplest possibility, supported by recent
astronomical observations, is the cosmological constant, generated in the
purely affine formulation of gravity by the Eddington Lagrangian. In this paper
we combine the electromagnetic field and the cosmological constant in the
purely affine formulation. We show that the sum of the two affine (Eddington
and Ferraris-Kijowski) Lagrangians is dynamically inequivalent to the sum of
the analogous (CDM and Einstein-Maxwell) Lagrangians in the
metric-affine/metric formulation. We also show that such a construction is
valid, like the affine Einstein-Born-Infeld formulation, only for weak
electromagnetic fields, on the order of the magnetic field in outer space of
the Solar System. Therefore the purely affine formulation that combines
gravity, electromagnetism and cosmological constant cannot be a simple sum of
affine terms corresponding separately to these fields. A quite complicated form
of the affine equivalent of the metric Einstein-Maxwell- Lagrangian
suggests that Nature can be described by a simpler affine Lagrangian, leading
to modifications of the Einstein-Maxwell-CDM theory for
electromagnetic fields that contribute to the spacetime curvature on the same
order as the cosmological constant.Comment: 17 pages, extended and combined with gr-qc/0612193; published versio
Maxwell equations in matrix form, squaring procedure, separating the variables, and structure of electromagnetic solutions
The Riemann -- Silberstein -- Majorana -- Oppenheimer approach to the Maxwell
electrodynamics in vacuum is investigated within the matrix formalism. The
matrix form of electrodynamics includes three real 4 \times 4 matrices. Within
the squaring procedure we construct four formal solutions of the Maxwell
equations on the base of scalar Klein -- Fock -- Gordon solutions. The problem
of separating physical electromagnetic waves in the linear space
\lambda_{0}\Psi^{0}+\lambda_{1}\Psi^{1}+\lambda_{2}\Psi^{2}+ lambda_{3}\Psi^{3}
is investigated, several particular cases, plane waves and cylindrical waves,
are considered in detail.Comment: 26 pages 16 International Seminar NCPC, May 19-22, 2009, Minsk,
Belaru
Two Mathematically Equivalent Versions of Maxwell's Equations
This paper is a review of the canonical proper-time approach to relativistic
mechanics and classical electrodynamics. The purpose is to provide a physically
complete classical background for a new approach to relativistic quantum
theory. Here, we first show that there are two versions of Maxwell's equations.
The new version fixes the clock of the field source for all inertial observers.
However now, the (natural definition of the effective) speed of light is no
longer an invariant for all observers, but depends on the motion of the source.
This approach allows us to account for radiation reaction without the
Lorentz-Dirac equation, self-energy (divergence), advanced potentials or any
assumptions about the structure of the source. The theory provides a new
invariance group which, in general, is a nonlinear and nonlocal representation
of the Lorentz group. This approach also provides a natural (and unique)
definition of simultaneity for all observers. The corresponding particle theory
is independent of particle number, noninvariant under time reversal (arrow of
time), compatible with quantum mechanics and has a corresponding positive
definite canonical Hamiltonian associated with the clock of the source.
We also provide a brief review of our work on the foundational aspects of the
corresponding relativistic quantum theory. Here, we show that the standard
square-root and the Dirac equations are actually two distinct
spin- particle equations.Comment: Appeared: Foundations of Physic
Radiation Reaction: General approach and applications, especially to electrodynamics
Radiation reaction (but, more generally, fluctuations and dissipation) occurs
when a system interacts with a heat bath, a particular case being the
interaction of an electron with the radiation field. We have developed a
general theory for the case of a quantum particle in a general potential (but,
in more detail, an oscillator potential) coupled to an arbitrary heat bath at
arbitrary temperature, and in an external time-dependent -number field. The
results may be applied to a large variety of problems in physics but we
concentrate by showing in detail the application to the blackbody radiation
heat bath, giving an exact result for radiation reaction problem which has no
unsatisfactory features such as the runaway solutions associated with the
Abraham-Lorentz theory. In addition, we show how atomic energy and free energy
shifts due to temperature may be calculated. Finally, we give a brief review of
applications to Josephson junctions, quantum statistical mechanics, mesoscopic
physics, quantum information, noise in gravitational wave detectors, Unruh
radiation and the violation of the quantum regression theore
- …