60 research outputs found

    An Underlying Theory for Gravity

    Full text link
    A new direction to understand gravity has recently been explored by considering classical gravity to be a derived interaction from an underlying theory. This underlying theory would involve new degrees of freedom at a deeper level and it would be structurally different from classical gravitation. It may conceivably be a quantum theory or a non-quantum theory. The relation between this underlying theory and Einstein's gravity is similar to the connection between statistical mechanics and thermodynamics. We discuss the apparent lack of evidence of any quantum nature of gravity in this context.Comment: Contributed paper to VIIth International Conference on Gravitation and Cosmology, 14 - 19 December, 2011 GOA, INDIA. 4 page

    Weak-field limit of Kaluza-Klein models with spherical compactification: experimental constraints

    Full text link
    We investigate the classical gravitational tests for the six-dimensional Kaluza-Klein model with spherical (of a radius aa) compactification of the internal space. The model contains also a bare multidimensional cosmological constant Λ6\Lambda_6. The matter, which corresponds to this ansatz, can be simulated by a perfect fluid with the vacuum equation of state in the external space and an arbitrary equation of state with the parameter ω1\omega_1 in the internal space. For example, ω1=1\omega_1=1 and ω1=2\omega_1=2 correspond to the monopole two-forms and the Casimir effect, respectively. In the particular case Λ6=0\Lambda_6=0, the parameter ω1\omega_1 is also absent: ω1=0\omega_1=0. In the weak-field approximation, we perturb the background ansatz by a point-like mass. We demonstrate that in the case ω1>0\omega_1>0 the perturbed metric coefficients have the Yukawa type corrections with respect to the usual Newtonian gravitational potential. The inverse square law experiments restrict the parameters of the model: $a/\sqrt{\omega_1}\lesssim 6\times10^{-3}\ {{cm}}.Therefore,intheSolarsystemtheparameterizedpost−Newtonianparameter. Therefore, in the Solar system the parameterized post-Newtonian parameter \gammaisequalto1withveryhighaccuracy.Thus,ourmodelsatisfiesthegravitationalexperiments(thedeflectionoflightandthetimedelayofradarechoes)atthesamelevelofaccuracyasGeneralRelativity.Wedemonstratealsothatourbackgroundmatterprovidesthestablecompactificationoftheinternalspaceinthecase is equal to 1 with very high accuracy. Thus, our model satisfies the gravitational experiments (the deflection of light and the time delay of radar echoes) at the same level of accuracy as General Relativity. We demonstrate also that our background matter provides the stable compactification of the internal space in the case \omega_1>0.However,if. However, if \omega_1=0,thentheparameterizedpost−Newtonianparameter, then the parameterized post-Newtonian parameter \gamma=1/3$, which strongly contradicts the observations.Comment: 8 pages, no figures, revised version, equations and references added, accepted for publication in Phys. Rev. D. arXiv admin note: significant text overlap with arXiv:1107.338

    Ultraslow Wave Nuclear Burning of Uranium-Plutonium Fissile Medium on Epithermal Neutrons

    Full text link
    For a fissile medium, originally consisting of uranium-238, the investigation of fulfillment of the wave burning criterion in a wide range of neutron energies is conducted for the first time, and a possibility of wave nuclear burning not only in the region of fast neutrons, but also for cold, epithermal and resonance ones is discovered for the first time. For the first time the results of the investigation of the Feoktistov criterion fulfillment for a fissile medium, originally consisting of uranium-238 dioxide with enrichments 4.38%, 2.00%, 1.00%, 0.71% and 0.50% with respect to uranium-235, in the region of neutron energies 0.015-10.0eV are presented. These results indicate a possibility of ultraslow wave neutron-nuclear burning mode realization in the uranium-plutonium media, originally (before the wave initiation by external neutron source) having enrichments with respect to uranium-235, corresponding to the subcritical state, in the regions of cold, thermal, epithermal and resonance neutrons. In order to validate the conclusions, based on the slow wave neutron-nuclear burning criterion fulfillment depending on the neutron energy, the numerical modeling of ultraslow wave neutron-nuclear burning of a natural uranium in the epithermal region of neutron energies (0.1-7.0eV) was conducted for the first time. The presented simulated results indicate the realization of the ultraslow wave neutron-nuclear burning of the natural uranium for the epithermal neutrons.Comment: 35 pages, 19 figures (v2: Fig12 and some misprints in the text are fixed

    Kaluza-Klein models: can we construct a viable example?

    Full text link
    In Kaluza-Klein models, we investigate soliton solutions of Einstein equation. We obtain the formulas for perihelion shift, deflection of light, time delay of radar echoes and PPN parameters. We find that the solitonic parameter k should be very big: |k|\geq 2.3\times10^4. We define a soliton solution which corresponds to a point-like mass source. In this case the soliton parameter k=2, which is clearly contrary to this restriction. Similar problem with the observations takes place for static spherically symmetric perfect fluid with the dust-like equation of state in all dimensions. The common for both of these models is the same equations of state in our three dimensions and in the extra dimensions. All dimensions are treated at equal footing. To be in agreement with observations, it is necessary to break the symmetry between the external/our and internal spaces. It takes place for black strings which are particular examples of solitons with k\to \infty. For such k, black strings are in concordance with the observations. Moreover, we show that they are the only solitons which are at the same level of agreement with the observations as in general relativity. Black strings can be treated as perfect fluid with dust-like equation of state p_0=0 in the external/our space and very specific equation of state p_1=-(1/2)\epsilon in the internal space. The latter equation is due to negative tension in the extra dimension. We also demonstrate that dimension 3 for the external space is a special one. Only in this case we get the latter equation of state. We show that the black string equations of state satisfy the necessary condition of the internal space stabilization. Therefore, black strings are good candidates for a viable model of astrophysical objects (e.g., Sun) if we can provide a satisfactory explanation of negative tension for particles constituting these objects.Comment: 11 pages, Revtex4, no figures, appendix and references adde

    Latent solitons, black strings, black branes, and equations of state in Kaluza-Klein models

    Full text link
    In Kaluza-Klein models with an arbitrary number of toroidal internal spaces, we investigate soliton solutions which describe the gravitational field of a massive compact object. We single out the physically interesting solution corresponding to a point-like mass. For the general solution we obtain equations of state in the external and internal spaces. These equations demonstrate that the point-like mass soliton has dust-like equations of state in all spaces. We also obtain the PPN parameters, which give the possibility to obtain the formulas for perihelion shift, deflection of light and time delay of radar echoes. Additionally, the gravitational experiments lead to a strong restriction on the parameter of the model: τ=−(2.1±2.3)×10−5\tau = -(2.1\pm 2.3)\times 10^{-5}. The point-like mass solution contradicts this restriction. The condition τ=0\tau=0 satisfies the experimental limitation and defines a new class of solutions which are indistinguishable from general relativity. We call such solutions latent solitons. Black strings and black branes belong to this class. Moreover, the condition of stability of the internal spaces singles out black strings/branes from the latent solitons and leads uniquely to the black string/brane equations of state pi=−ϵ/2p_i=-\epsilon/2, in the internal spaces and to the number of the external dimensions d0=3d_0=3. The investigation of multidimensional static spherically symmetric perfect fluid with dust-like equation of state in the external space confirms the above results.Comment: 8 pages, Revtex4, no figures, minor changes adde

    Hubble flows and gravitational potentials in observable Universe

    Full text link
    In this paper, we consider the Universe deep inside of the cell of uniformity. At these scales, the Universe is filled with inhomogeneously distributed discrete structures (galaxies, groups and clusters of galaxies), which disturb the background Friedmann model. We propose mathematical models with conformally flat, hyperbolic and spherical spaces. For these models, we obtain the gravitational potential for an arbitrary number of randomly distributed inhomogeneities. In the cases of flat and hyperbolic spaces, the potential is finite at any point, including spatial infinity, and valid for an arbitrary number of gravitating sources. For both of these models, we investigate the motion of test masses (e.g., dwarf galaxies) in the vicinity of one of the inhomogeneities. We show that there is a distance from the inhomogeneity, at which the cosmological expansion prevails over the gravitational attraction and where test masses form the Hubble flow. For our group of galaxies, it happens at a few Mpc and the radius of the zero-acceleration sphere is of the order of 1 Mpc, which is very close to observations. Outside of this sphere, the dragging effect of the gravitational attraction goes very fast to zero.Comment: 21 pages, 5 figure
    • …
    corecore