8 research outputs found

    Enhanced production yields of rVSV-SARS-CoV-2 vaccine using Fibra-Cel® macrocarriers

    Get PDF
    The COVID-19 pandemic has led to high global demand for vaccines to safeguard public health. To that end, our institute has developed a recombinant viral vector vaccine utilizing a modified vesicular stomatitis virus (VSV) construct, wherein the G protein of VSV is replaced with the spike protein of SARS-CoV-2 (rVSV-ΔG-spike). Previous studies have demonstrated the production of a VSV-based vaccine in Vero cells adsorbed on Cytodex 1 microcarriers or in suspension. However, the titers were limited by both the carrier surface area and shear forces. Here, we describe the development of a bioprocess for rVSV-ΔG-spike production in serum-free Vero cells using porous Fibra-Cel® macrocarriers in fixed-bed BioBLU®320 5p bioreactors, leading to high-end titers. We identified core factors that significantly improved virus production, such as the kinetics of virus production, the use of macrospargers for oxygen supply, and medium replenishment. Implementing these parameters, among others, in a series of GMP production processes improved the titer yields by at least two orders of magnitude (2e9 PFU/mL) over previously reported values. The developed process was highly effective, repeatable, and robust, creating potent and genetically stable vaccine viruses and introducing new opportunities for application in other viral vaccine platforms

    Ex vivo intestinal permeability assay (X-IPA) for tracking barrier function dynamics

    No full text
    Abstract The intestinal epithelial barrier facilitates homeostatic host–microbiota interactions and immunological tolerance. However, mechanistic dissections of barrier dynamics following luminal stimulation pose a substantial challenge. Here, we describe an ex vivo intestinal permeability assay, X-IPA, for quantitative analysis of gut permeability dynamics at the whole-tissue level. We demonstrate that specific gut microbes and metabolites induce rapid, dose-dependent increases to gut permeability, thus providing a powerful approach for precise investigation of barrier functions

    Immunologic and Protective Properties of Subunit- vs. Whole Toxoid-Derived Anti-Botulinum Equine Antitoxin

    No full text
    Botulism is a paralytic disease caused by botulinum neurotoxins (BoNTs). Equine antitoxin is currently the standard therapy for botulism in human. The preparation of equine antitoxin relies on the immunization of horses with botulinum toxoid, which suffers from low yield and safety limitations. The Hc fragment of BoNTs was suggested to be a potent antibotulinum subunit vaccine. The current study presents a comparative evaluation of equine-based toxoid-derived antitoxin (TDA) and subunit-derived antitoxin (SDA). The potency of recombinant Hc/A, Hc/B, and Hc/E in mice was similar to that of toxoids of the corresponding serotypes. A single boost with Hc/E administered to a toxoid E-hyperimmune horse increased the neutralizing antibody concentration (NAC) from 250 to 850 IU/mL. Immunization of naïve horses with the recombinant subunits induced a NAC comparable to that of horses immunized with the toxoid. SDA and TDA bound common epitopes on BoNTs, as demonstrated by an in vitro competition binding assay. In vivo, SDA and TDA showed similar efficacy when administered to guinea pigs postexposure to a lethal dose of botulinum toxins. Collectively, the results of the current study suggest that recombinant BoNT subunits may replace botulinum toxoids as efficient and safe antigens for the preparation of pharmaceutical anti-botulinum equine antitoxins

    Development and Validation of an Innovative Analytical Approach for the Quantitation of Tris(Hydroxymethyl)Aminomethane (TRIS) in Pharmaceutical Formulations by Liquid Chromatography Tandem Mass Spectrometry

    No full text
    A novel COVID-19 vaccine (BriLife®) has been developed by the Israel Institute for Biological Research (IIBR) to prevent the spread of the SARS-CoV-2 virus throughout the population in Israel. One of the components in the vaccine formulation is tris(hydroxymethyl)aminomethane (tromethamine, TRIS), a buffering agent. TRIS is a commonly used excipient in various approved parenteral medicinal products, including the mRNA COVID-19 vaccines produced by Pfizer/BioNtech and Moderna. TRIS is a hydrophilic basic compound that does not contain any chromophores/fluorophores and hence cannot be retained and detected by reverse-phase liquid chromatography (RPLC)-ultraviolet (UV)/fluorescence methods. Among the few extant methods for TRIS determination, all exhibit a lack of selectivity and/or sensitivity and require laborious sample treatment. In this study, LC–mass spectrometry (MS) with its inherent selectivity and sensitivity in the multiple reaction monitoring (MRM) mode was utilized, for the first time, as an alternative method for TRIS quantitation. Extensive validation of the developed method demonstrated suitable specificity, linearity, precision, accuracy and robustness over the investigated concentration range (1.2–4.8 mg/mL). Specifically, the R2 of the standard curve was >0.999, the recovery was >92%, and the coefficient of variance (%CV) was <12% and <6% for repeatability and intermediate precision, respectively. Moreover, the method was validated in accordance with strict Good Manufacturing Practice (GMP) guidelines. The developed method provides valuable tools that pharmaceutical companies can use for TRIS quantitation in vaccines and other pharmaceutical products

    Highly Efficient Purification of Recombinant VSV-∆G-Spike Vaccine against SARS-CoV-2 by Flow-Through Chromatography

    No full text
    This study reports a highly efficient, rapid one-step purification process for the production of the recombinant vesicular stomatitis virus-based vaccine, rVSV-∆G-spike (rVSV-S), recently developed by the Israel Institute for Biological Research (IIBR) for the prevention of COVID-19. Several purification strategies are evaluated using a variety of chromatography methods, including membrane adsorbers and packed-bed ion-exchange chromatography. Cell harvest is initially treated with endonuclease, clarified, and further concentrated by ultrafiltration before chromatography purification. The use of anion-exchange chromatography in all forms results in strong binding of the virus to the media, necessitating a high salt concentration for elution. The large virus and spike protein binds very strongly to the high surface area of the membrane adsorbents, resulting in poor virus recovery (TM Core 700 resin, which does not require binding and the elution of the virus, is described. rVSV-S cannot enter the inner pores of the resin and is collected in the flow-through eluent. Purification of the rVSV-S virus with CaptoTM Core 700 resulted in viral infectivity above 85% for this step, with the efficient removal of host cell proteins, consistent with regulatory requirements. Similar results were obtained without an initial ultrafiltration step

    The 10th Conference of the Entomological Society of Israel

    No full text
    corecore