321 research outputs found

    Optical and X-ray clusters as tracers of the supercluster-void network. I Superclusters of Abell and X-ray clusters

    Full text link
    We study the distribution of X-ray selected clusters of galaxies with respect to superclusters determined by Abell clusters of galaxies and show that the distribution of X-ray clusters follows the supercluster-void network determined by Abell clusters. We find that in this network X-ray clusters are more strongly clustered than other clusters. Poor, non-Abell X-ray clusters follow the supercluster-void network as well: these clusters are embedded in superclusters determined by rich clusters and populate filaments between them. We present a new catalog of superclusters of Abell clusters out to a redshift of z_{lim}=0.13, a catalog of X-ray clusters located in superclusters determined by Abell clusters, and a list of additional superclusters of X-ray clusters.Comment: LaTex (sty files added), 16 pages, 3 ps figures, submitted to Astronomical Journal. Animations of the 3D distribution of superclusters of Abell and X-ray clusters at http://www.aai.ee/~maret/SCLVnet.ht

    Steps toward the power spectrum of matter. II. The biasing correction with sigma_8 normalization

    Full text link
    A new method to determine the bias parameter of galaxies relative to matter is suggested. The method is based on the assumption that gravity is the dominating force which determines the formation of the structure in the Universe. Due to gravitational instability the galaxy formation is a threshold process: in low-density environments galaxies do not form and matter remains in primordial form. We investigate the influence of the presence of void and clustered populations to the power spectrum of matter and galaxies. The power spectrum of galaxies is similar to the power spectrum of matter; the fraction of total matter in the clustered population determines the difference between amplitudes of fluctuations of matter and galaxies, i.e. the bias factor. To determine the fraction of matter in voids and clustered population we perform numerical simulations. The fraction of matter in galaxies at the present epoch is found using a calibration through the sigma_8 parameter.Comment: LaTex (sty files added), 31 pages, 4 PostScript figures embedded, Astrophysical Journal (accepted

    10 GeV dark matter candidates and cosmic-ray antiprotons

    Full text link
    Recent measurements performed with some direct dark matter detection experiments, e.g. CDMS-II and CoGENT (after DAMA/LIBRA), have unveiled a few events compatible with weakly interacting massive particles. The preferred mass range is around 10 GeV, with a quite large spin-independent cross section of 104310^{-43}-1041cm210^{-41}\,{\rm cm^2}. In this paper, we recall that a light dark matter particle with dominant couplings to quarks should also generate cosmic-ray antiprotons. Taking advantage of recent works constraining the Galactic dark matter mass profile on the one hand and on cosmic-ray propagation on the other hand, we point out that considering a thermal annihilation cross section for such low mass candidates very likely results in an antiproton flux in tension with the current data, which should be taken into account in subsequent studies.Comment: 4 pages, 2 figures. V2: minor changes to match the published versio

    Dipole-interacting Fermionic Dark Matter in positron, antiproton, and gamma-ray channels

    Full text link
    Cosmic ray signals from dipole-interacting dark matter annihilation are considered in the positron, antiproton and photon channels. The predicted signals in the positron channel could nicely account for the excess of positron fraction from Fermi LAT, PAMELA, HEAT and AMS-01 experiments for the dark matter mass larger than 100 GeV with a boost (enhancement) factor of 30-80. No excess of antiproton over proton ratio at the experiments also gives a severe restriction for this scenario. With the boost factors, the predicted signals from Galactic halo and signals as mono-energetic gamma-ray lines (monochromatic photons) for the region close to the Galactic center are investigated. The gamma-ray excess of recent tentative analyses based on Fermi LAT data and the potential probe of the monochromatic lines at a planned experiment, AMS-02, are also considered.Comment: Version to be published in PRD(2013), Title changed, text modifie

    Steps toward the power spectrum of matter. I.The mean spectrum of galaxies

    Full text link
    We calculate the mean power spectrum of galaxies using published power spectra of galaxies and clusters of galaxies. On small scales we use the power spectrum derived from the 2-dimensional distribution of APM galaxies, on large scales we use power spectra derived from 3-dimensional data for galaxy and cluster samples. Spectra are reduced to real space and to the amplitude of the power spectrum of APM galaxies. Available data indicate the presence of two different populations in the nearby Universe. Clusters of galaxies sample a relatively large region in the Universe where rich, medium and poor superclusters are well represented. Their mean power spectrum has a spike on scale 120 h^{-1}Mpc, followed by an approximate power-law spectrum of index n = -1.9 towards small scales. The power spectrum found from LCRS and IRAS 1.2 Jy surveys is flatter around the maximum, which may represent regions of the Universe with medium-rich and poor superclusters.Comment: LaTex (sty files added), 35 pages, 5 PostScript figures and Table with mean power spectrum embedded, Astrophysical Journal (accepted

    Exploring star formation using the filaments in the Sloan Digital Sky Survey Data Release Five (SDSS DR5)

    Full text link
    We have quantified the average filamentarity of the galaxy distribution in seven nearly two dimensional strips from the SDSS DR5 using a volume limited sample in the absolute magnitude range -21 < M_r < -20. The average filamentarity of star forming (SF) galaxies, which are predominantly blue, is found to be more than that of other galaxies which are predominantly red. This difference is possibly an outcome of the fact that blue galaxies have a more filamentary distribution. Comparing the SF galaxies with only the blue other galaxies, we find that the two show nearly equal filamentarity. Separately analyzing the galaxies with high star formation rates (SFR) and low SFR, we find that the latter has a more filamentary distribution. We interpret this in terms of two effects (1.) A correlation between the SFR and individual galaxy properties like luminosity with the high SFR galaxies being more luminous (2.) A relation between the SFR and environmental effects like the density with the high SFR galaxies preferentially occurring in high density regions. These two effects are possibly not independent and are operating simultaneously. We do not find any difference in the filamentarity of SF galaxies and AGNs.Comment: 6 pages, 3 figures, Final accepted version in MNRAS, in pres

    Substructure Boosts to Dark Matter Annihilation from Sommerfeld Enhancement

    Full text link
    The recently introduced Sommerfeld enhancement of the dark matter annihilation cross section has important implications for the detection of dark matter annihilation in subhalos in the Galactic halo. In addition to the boost to the dark matter annihilation cross section from the high densities of these subhalos with respect to the main halo, an additional boost caused by the Sommerfeld enhancement results from the fact that they are kinematically colder than the Galactic halo. If we further believe the generic prediction of CDM that in each subhalo there is an abundance of substructure which is approximately self-similar to that of the Galactic halo, then I show that additional boosts coming from the density enhancements of these small substructures and their small velocity dispersions enhance the dark matter annihilation cross section even further. I find that very large boost factors (10510^5 to 10910^9) are obtained in a large class of models. The implications of these boost factors for the detection of dark matter annihilation from dwarf Spheroidal galaxies in the Galactic halo are such that, generically, they outshine the background gamma-ray flux and are detectable by the Fermi Gamma-ray Space Telescope.Comment: PRD in pres

    XMM-Newton discovery of O VII emission from warm gas in clusters of galaxies

    Full text link
    XMM-Newton recently discovered O VII line emission from ~2 million K gas near the outer parts of several clusters of galaxies. This emission is attributed to the Warm-Hot Intergalactic Medium. The original sample of clusters studied for this purpose has been extended and two more clusters with a soft X-ray excess have been found. We discuss the physical properties of the warm gas, in particular the density, spatial extent, abundances and temperature.Comment: 8 pages, 3 figures, conference "Soft X-ray emission from clusters of galaxies and related phenomena", ed. R. Lieu, Kluwer, in pres

    Does the galaxy correlation length increase with the sample depth?

    Get PDF
    We have analyzed the behavior of the correlation length, r0r_0, as a function of the sample depth by extracting from the CfA2 redshift survey volume--limited samples out to increasing distances. For a fractal distribution, the value of r0r_0 would increase with the volume occupied by the sample. We find no linear increase for the CfA2 samples of the sort that would be expected if the Universe preserved its small scale fractal character out to the distances considered (60--100\hmpc). The results instead show a roughly constant value for r0r_0 as a function of the size of the sample, with small fluctuations due to local inhomogeneities and luminosity segregation. Thus the fractal picture can safely be discarded.Comment: Accepted for publication in ApJ

    Voids in the Large-Scale Structure

    Get PDF
    Voids are the most prominent feature of the LSS of the universe. Still, they have been generally ignored in quantitative analysis of it, essentially due to the lack of an objective tool to identify and quantify the voids. To overcome this, we present the Void-Finder algorithm, a novel tool for objectively quantifying galaxy voids. The algorithm classifies galaxies as either wall- or field-galaxies. Then it identifies voids in the wall-galaxy distribution. Voids are defined as continuous volumes that do not contain any wall-galaxies. The voids must be thicker than an adjustable limit, which is refined in successive iterations. We test the algorithm using Voronoi tessellations. By appropriate scaling of the parameters we apply it to the SSRS2 survey and to the IRAS 1.2 Jy. Both surveys show similar properties: ~50% of the volume is filled by the voids, which have a scale of at least 40 Mpc, and a -0.9 under-density. Faint galaxies populate the voids more than bright ones. These results suggest that both optically and IRAS selected galaxies delineate the same LSS. Comparison with the recovered mass distribution further suggests that the observed voids in the galaxy distribution correspond well to under-dense regions in the mass distribution. This confirms the gravitational origin of the voids.Comment: Submitted to ApJ; 33 pages, aaspp4 LaTeX file, using epsfig and natbib, 1 table, 12 PS figures. Complete gzipped version is available at http://shemesh.fiz.huji.ac.il/hagai/; uuencoded file is available at http://shemesh.fiz.huji.ac.il/papers/ep3.uu or ftp://shemesh.fiz.huji.ac.i
    corecore