19 research outputs found

    Identifying lifestyle factors associated to co-morbidity of obesity and psychiatric disorders, a pilot study

    Get PDF
    Obesity and psychiatric disorders are linked through a bidirectional association. Obesity rates have tripled globally in the past decades, and it is predicted that by 2025, one billion people will be affected by obesity, often with a co-morbidity such as depression. While this co-morbidity seems to be a global health issue, lifestyle factors associated to it differ between countries and are often attributed to more than one factor. Prior obesity studies were performed in Western populations; this is the first study that investigates lifestyle factors relating to obesity and mental health of the diverse population in Qatar, a country that has witnessed tremendous lifestyle change in a short time. In this pilot study, we surveyed 379 respondents to assess and compare the lifestyles of Qatar residents to the global population. However due to the high proportion of responses from the United Kingdom (UK) residents, we have made comparisons between Qatar residents and UK residents. We used chi-square analysis, spearman rank correlation and logistic regression to compare the lifestyle factors of individuals suffering from both increased BMI and mental health conditions. The types of food consumed, stress, exercise frequency and duration, alcohol and tobacco consumption, and sleep duration, were explored and results argue that different lifestyle factors can contribute to the same health condition, suggesting different mechanisms involved. We found that both groups reported similar sleep durations (p = 0.800), but that perception of sleep (p = 0.011), consumption of alcohol (p = 0.001), consumption of takeaway food (p = 0.007), and physical activity significantly varied between the groups (p = 0.0001). The study examined the predictors of comorbidity in Qatar as well as UK populations using multivariate logistic regression analysis. The result of the study showed no statistical association between comorbidity and the predictors drinking habit, smoking, physical activity, vegetable consumption, eat outs, and sleep perception for the Qatar population, and for the combined population. This study, however showed a significant association (p = 0.033) between sleep perception and comorbidity for the UK population. We conclude that further analysis is needed to understand the relationship between specific lifestyle factors and multimorbidity in each country

    IL-7 promotes T cell proliferation through destabilization of p27Kip1

    Get PDF
    Interleukin (IL)-7 is required for survival and homeostatic proliferation of T lymphocytes. The survival effect of IL-7 is primarily through regulation of Bcl-2 family members; however, the proliferative mechanism is unclear. It has not been determined whether the IL-7 receptor actually delivers a proliferative signal or whether, by promoting survival, proliferation results from signals other than the IL-7 receptor. We show that in an IL-7–dependent T cell line, cells protected from apoptosis nevertheless underwent cell cycle arrest after IL-7 withdrawal. This arrest was accompanied by up-regulation of the cyclin-dependent kinase inhibitor p27Kip1 through a posttranslational mechanism. Overexpression of p27Kip1 induced G1 arrest in the presence of IL-7, whereas knockdown of p27Kip1 by small interfering RNA promoted S phase entry after IL-7 withdrawal. CD4 or CD8 T cells transferred into IL-7–deficient hosts underwent G1 arrest, whereas 27Kip1-deficient T cells underwent proliferation. We observed that IL-7 withdrawal activated protein kinase C (PKC)θ and that inhibition of PKCθ with a pharmacological inhibitor completely blocked the rise of p27Kip1 and rescued cells from G1 arrest. The conventional pathway to breakdown of p27Kip1 is mediated by S phase kinase-associated protein 2; however, our evidence suggests that PKCθ acts via a distinct, unknown pathway inducing G1 arrest after IL-7 withdrawal from T cells. Hence, IL-7 maintains T cell proliferation through a novel pathway of p27Kip1 regulation

    Cell Cycle Sibling Rivalry: Cdc2 Versus Cdk2

    No full text

    Cdk2 and Cdk4 Activities Are Dispensable for Tumorigenesis Caused by the Loss of p53â–¿

    No full text
    The loss of p53 induces spontaneous tumors in mice, and p53 mutations are found in approximately 50% of human tumors. These tumors are generally caused by a number of events, including genomic instability, checkpoint defects, mitotic defects, deregulation of transcriptional targets, impaired apoptosis, and G1 deregulation or a combination of these effects. In order to determine the role of proteins involved in G1 control in tumorigenesis, we focused on Cdk2 and Cdk4, two cyclin-dependent kinases that in association with cyclin E and cyclin D promote the G1/S phase transition. We analyzed the consequence of loss of Cdk2 in p53-null animals by generating Cdk2−/− p53−/− mice. These mice are viable and developed spontaneous tumors, predominantly lymphoblastic lymphomas, similar to p53−/− mice. In contrast, the genotypes Cdk4−/− p53−/− were mostly lethal, with few exceptions, and Cdk2−/− Cdk4−/−p53−/− mice die during embryogenesis at embryonic day 13.5. To study the oncogenic potential, we generated mouse embryonic fibroblasts (MEFs) and found that p53−/−, Cdk2−/− p53−/−, Cdk4−/− p53−/−, and Cdk2−/− Cdk4−/− p53−/− MEFs grew at similar rates without entering senescence. Ras-transformed MEFs of these genotypes were able to form colonies in vitro and induce tumors in nude mice. Our results suggest that tumorigenicity mediated by p53 loss does not require either Cdk2 or Cdk4, which necessitates considering the use of broad-spectrum cell cycle inhibitors as a means of effective anti-Cdk cancer therapy

    Il-7 Promotes T Cell Proliferation Through Destabilization Of P27 \u3csup\u3eKip1\u3c/sup\u3e

    No full text
    Interleukin (IL)-7 is required for survival and homeostatic proliferation of T lymphocytes. The survival effect of IL-7 is primarily through regulation of Bcl-2 family members; however, the proliferative mechanism is unclear. It has not been determined whether the IL-7 receptor actually delivers a proliferative signal or whether, by promoting survival, proliferation results from signals other than the IL-7 receptor. We show that in an IL-7-dependent T cell line, cells protected from apoptosis nevertheless underwent cell cycle arrest after IL-7 withdrawal. This arrest was accompanied by up-regulation of the cyclin-dependent kinase inhibitor p27Kip1 through a posttranslational mechanism. Overexpression of p27Kip1 induced G1 arrest in the presence of IL-7, whereas knockdown of p27Kip1 by small interfering RNA promoted S phase entry after IL-7 withdrawal. CD4 or CD8 T cells transferred into IL-7-deficient hosts underwent G1 arrest, whereas 27Kip1- deficient T cells underwent proliferation. We observed that IL-7 withdrawal activated protein kinase C (PKC)θ and that inhibition of PKCθ with a pharmacological inhibitor completely blocked the rise of p27Kip1 and rescued cells from G1 arrest. The conven tional pathway to breakdown of p27Kip1 is mediated by S phase kinase-associated protein 2; however, our evidence suggests that PKCθ acts via a distinct, unknown pathway inducing G1 arrest after IL-7 withdrawal from T cells. Hence, IL-7 maintains T cell proliferation through a novel pathway of p27Kip1 regulation

    Nuclear insulin-like growth factor 1 receptor phosphorylates proliferating cell nuclear antigen and rescues stalled replication forks after DNA damage

    No full text
    We have previously shown that the insulin-like growth factor 1 receptor (IGF-1R) translocates to the cell nucleus, where it binds to enhancer-like regions and increases gene transcription. Further studies have demonstrated that nuclear IGF-1R (nIGF-1R) physically and functionally interacts with some nuclear proteins, i.e. the lymphoid enhancer-binding factor 1 (Lef1), histone H3, and Brahma-related gene-1 proteins. In this study, we identified the proliferating cell nuclear antigen (PCNA) as a nIGF-1R-binding partner. PCNA is a pivotal component of the replication fork machinery and a main regulator of the DNA damage tolerance (DDT) pathway. We found that IGF-1R interacts with and phosphorylates PCNA in human embryonic stem cells and other cell lines. In vitro MS analysis of PCNA co-incubated with the IGF-1R kinase indicated tyrosine residues 60, 133, and 250 in PCNA as IGF-1R targets, and PCNA phosphorylation was followed by mono- and polyubiquitination. Co-immunoprecipitation experiments suggested that these ubiquitination events may be mediated by DDT-dependent E2/E3 ligases (e.g. RAD18 and SHPRH/HLTF). Absence of IGF-1R or mutation of Tyr-60, Tyr-133, or Tyr-250 in PCNA abrogated its ubiquitination. Unlike in cells expressing IGF-1R, externally induced DNA damage in IGF-1R-negative cells caused G(1) cell cycle arrest and S phase fork stalling. Taken together, our results suggest a role of IGF-1R in DDT.Swedish Cancer Foundation; Swedish Research Council; Cancer Society in Stockholm; Swedish Children Cancer Society; Stockholm County Council; Karolinska Institutet12 month embargo; Published online: 18 September 2018This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Disulfiram overcomes bortezomib and cytarabine resistance in Down-syndrome-associated acute myeloid leukemia cells

    Get PDF
    Background: Children with Down syndrome (DS) have increased risk for developing AML (DS-AMKL), and they usually experience severe therapy-related toxicities compared to non DS-AMKL. Refractory/ relapsed disease has very poor outcome, and patients would benefit from novel, less toxic, therapeutic strategies that overcome resistance. Relapse/resistance are linked to cancer stem cells with high aldehyde dehydrogenase (ALDH) activity. The purpose of the present work was to study less toxic alternative therapeutic agents for relapsed/refractory DS-AMKL. Methods: Fourteen AML cell lines including the DS-AMKL CMY and CMK from relapsed/refractory AML were used. Cytarabine (Ara-C), bortezomib (BTZ), disulfiram/copper (DSF/Cu2+) were evaluated for cytotoxicity, depletion of ALDH-positive cells, and resistance. BTZ-resistant CMY and CMK variants were generated by continuous BTZ treatment. Cell viability was assessed using CellTiter-Glo((R)), ALDH activity by ALDELUOR(TM), and proteasome inhibition by western blot of ubiquitinated proteins and the Proteasome-Glo(TM) Chymotrypsin-Like (CT-like) assay, apoptosis by Annexin V Fluos/Propidium iodide staining, and mutations were detected using PCR, cloning and sequencing. Results: Ara-C-resistant AML cell lines were sensitive to BTZ and DSF/Cu2+. The Ara-C-resistant DS-AMKL CMY cells had a high percentage of ALDHbright "stem-like" populations that may underlie Ara-C resistance. One percent of these cells were still resistant to BTZ but sensitive to DSF/Cu2+. To understand the mechanism of BTZ resistance, BTZ resistant (CMY-BR) and (CMK-BR) were generated. A novel mutation PSMB5 Q62P underlied BTZ resistance, and was associated with an overexpression of the beta 5 proteasome subunit. BTZ-resistance conferred increased resistance toAra-C due to G1 arrest in the CMY-BR cells, which protected the cells from S-phase damage by Ara-C. CMY-BR and CMK-BR cells were cross-resistant to CFZ and MG-132 but sensitive to DSF/Cu2+. In this setting, DSF/Cu2+ induced apoptosis and proteasome inhibition independent of CT-like activity inhibition. Conclusions: We provide evidence that DSF/Cu2+ overcomes Ara-C and BTZ resistance in cell lines from DS-AMKL patients. A novel mutation underlying BTZ resistance was detected that may identify BTZ-resistant patients, who may not benefit from treatment with CFZ or Ara-C, but may be responsive to DSF/Cu2+. Our findings support the clinical development of DSF/Cu2+ as a less toxic efficacious treatment approach in patients with relapsed/refractory DS-AMKL.St. Baldrick consortium; Children's Cancer Network; Phoenix Children's Hospital Foundation; University of Arizona Department of Child Health missionOpen Access JournalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore