14 research outputs found

    Cold dark matter in brane cosmology scenario

    Get PDF
    We analyze the dark matter problem in the context of brane cosmology. We investigate the impact of the non-conventional brane cosmology on the relic abundance of non-relativistic stable particles in high and low reheating scenarios. We show that in case of high reheating temperature, the brane cosmology may enhance the dark matter relic density by many order of magnitudes and a stringent lower bound on the five dimensional scale is obtained. We also consider low reheating temperature scenarios with chemical equilibrium and non-equilibrium. We emphasize that in non-equilibrium case, the resulting relic density is very small. While with equilibrium, it is increased by a factor of O(10^2) with respect to the standard thermal production. Therefore, dark matter particles with large cross section, which is favored by detection expirements, can be consistent with the recent relic density observational limits.Comment: 14 pages, 1 figur

    Phenomenology of strangeness production at high energies

    Full text link
    The strange-quark occupation factor (γs\gamma_s) is determined from the statistical fit of the multiplicity ratio K+/π+\mathrm{K}^+/\pi^+ in a wide range of nucleon-nucleon center-of-mass energies (sNN\sqrt{s_{NN}}). From this single-strange-quark-subsystem, γs(sNN)\gamma_s(\sqrt{s_{NN}}) was parametrized as a damped trigonometric functionality and successfully implemented to the hadron resonance gas model, at chemical semi-equilibrium. Various particle ratios including K−/π−\mathrm{K}^-/\pi^-, Λ/π−\mathrm{\Lambda}/\pi^-, and Λˉ/π−\mathrm{\bar{\Lambda}}/\pi^- are well reproduced. The phenomenology of γs(sNN)\gamma_s(\sqrt{s_{NN}}) suggests that, the hadrons (γs\gamma_s raises) at sNN≃7 \sqrt{s_{NN}} \simeq 7~GeV seems to undergo a phase transition to a mixed phase (γs\gamma_s declines), which is then derived into partons (γs\gamma_s remains unchanged with increasing sNN\sqrt{s_{NN}}), at sNN≃20 \sqrt{s_{NN}} \simeq 20~GeV.Comment: 6 pages, 2 figures, accepted for publication in EP

    Consequences of minimal length discretization on line element, metric tensor, and geodesic equation

    No full text
    When minimal length uncertainty emerging from a generalized uncertainty principle (GUP) is thoughtfully implemented, it is of great interest to consider its impacts on gravitational Einstein field equations (gEFEs) and to try to assess consequential modifications in metric manifesting properties of quantum geometry due to quantum gravity. GUP takes into account the gravitational impacts on the noncommutation relations of length (distance) and momentum operators or time and energy operators and so on. On the other hand, gEFE relates classical geometry or general relativity gravity to the energy–momentum tensors, that is, proposing quantum equations of state. Despite the technical difficulties, we intend to insert GUP into the metric tensor so that the line element and the geodesic equation in flat and curved space are accordingly modified. The latter apparently encompasses acceleration, jerk, and snap (jounce) of a particle in the quasi-quantized gravitational field. Finite higher orders of acceleration apparently manifest phenomena such as accelerating expansion and transitions between different radii of curvature and so on
    corecore