2 research outputs found
FLT3 and JAK2 mutations in acute myeloid leukemia promote interchromosomal homologous recombination and the potential for copy neutral loss of heterozygosity
Acquired copy neutralLOH (CN-LOH) is a frequent occurrence in myeloid malignancies and is often associated with resistance to standard therapeutic modalities and poor survival. Here, we show that constitutive signaling driven by mutated FLT3 and JAK2 confers interchromosomal homologous recombination (iHR), a precedent for CN-LOH. Using a targeted recombination assay, we determined significant iHR activity in internal tandem duplication FLT3 (FLT3-ITD) and JAK2V617F-mutated cells. Sister chromatid exchanges, a surrogate measure of iHR, was significantly elevated in primary FLT3-ITD normal karyotype acute myeloid leukemia (NK-AML) compared with wild-type FLT3 NK-AML. HR was harmonized to S phase of the cell cycle to repair broken chromatids and prevent iHR. Increased HR activity in G0 arrested primary FLT3-ITD NK-AML in contrast to wild-type FLT3 NK-AML. Cells expressing mutated FLT3-ITD demonstrated a relative increase in mutation frequency as detected by thymidine kinase (TK) gene mutation assay. Moreover, resistance was associated with CN-LOH at the TK locus. Treatment of FLT3-ITD- and JAK2V617F-mutant cells with the antioxidant N-acetylcysteine diminished reactive oxygen species (ROS), restoring iHR and HR levels. Our findings show that mutated FLT3-ITD and JAK2 augment ROS production and HR, shifting the cellular milieu toward illegitimate recombination events such as iHR and CN-LOH. Therapeutic reduction of ROS may thus prevent leukemic progression and relapse in myeloid malignancies.</p
Mesenchymal cells support the early retention of primary alveolar type 2 cells on acellular mouse lung scaffolds
Objectives: Tissue engineering approaches via repopulation of acellular biological grafts provide an exciting opportunity to generate lung grafts for transplantation. Alveolar type 2 (AT2) cells are a promising cell source for re-epithelialization. There are however inherent limitations with respect to their survival and growth, thus impeding their usability for tissue engineering applications. This study investigates the use of mesenchymal stromal cells to support primary AT2 cells for recellularization of mouse lung scaffolds. Methods: AT2 cells and bone marrow-derived mesenchymal cells (BMC) were co-delivered to decellularized mouse lung scaffolds. Recellularized lungs were evaluated for cell surface coverage, viability, and differentiation at 1 and 4 days after cell seeding. Recellularization was evaluated via histological analysis and immunofluorescence. Results: Simultaneous delivery of AT2 and BMC into acellular lung scaffolds resulted in enhanced cell surface coverage and reduced AT2 cell apoptosis in the recellularized scaffolds at Day 1 but not Day 4. AT2 cell number decreased after 4 days in both of AT2 only and codelivery groups suggesting limited expansion potential in the scaffold. After retention in the scaffold, AT2 cells differentiated into Aqp5-expressing cells. Conclusions: Our results indicate that BMC support AT2 cell survival during the initial attachment and engraftment phase of recellularization. While our findings suggest only a short-term beneficial effect of BMC, our study demonstrates that AT2 cells can be delivered and retained in acellular lung scaffolds; thus with preconditioning and supporting cells, may be used for re-epithelialization. Selection and characterization of appropriate cell sources for use in recellularization, will be critical for ultimate clinical application