1 research outputs found

    Enhancing superconductivity: Magnetic impurities and their quenching by magnetic fields

    Full text link
    Magnetic fields and magnetic impurities are each known to suppress superconductivity. However, as the field quenches (i.e. polarizes) the impurities, rich consequences, including field-enhanced superconductivity, can emerge when both effects are present. For the case of superconducting wires and thin films, this field-spin interplay is investigated via the Eilenberger-Usadel scheme. Non-monotonic dependence of the critical current on the field (and therefore field-enhanced superconductivity) is found to be possible, even in parameter regimes in which the critical temperature decreases monotonically with increasing field. The present work complements that of Kharitonov and Feigel'man, which predicts non-monotonic behavior of the critical temperature.Comment: 8 pages, 2 figures, EPL forma
    corecore