21 research outputs found

    Realizing full potential of bioelectrochemical and photoelectrochemical systems

    No full text
    In this issue of Joule, the study by Lu et al. on spontaneous solar syngas production from CO2 driven by energetically favorable wastewater microbial anodes demonstrated a microbial photoelectrochemical system that combines oxidation of organic wastes in wastewater with photocathodic CO2 reduction reaction. Spontaneous CO2 reduction using the energy stored from sunlight and microorganisms incites the (bio)electrochemical system to the next stage by making CO2 reduction independent from additional energy sources

    Iron phthalocyanine and MnOx composite catalysts for microbial fuel cell applications

    No full text
    A low cost iron phthalocyanine (FePc)-MnOx composite catalyst was prepared for the oxygen reduction reaction (ORR) in the cathode of microbial fuel cells (MFCs).The catalysts were characterised using rotating ring disc electrode technique. The n number of electrons transferred, and H2O2 production from ORR was investigated. The FePc-MnOx composite catalyst showed higher ORR reduction current than FePc and Pt in low overpotential region. MFC with composite catalysts on the cathode was tested and compared to Pt and FePc cathodes. The cell performance was evaluated in buffered primary clarifier influent from wastewater treatment plant. The membrane-less single chamber MFC generated more power with composite FePcMnOx/MON air cathodes (143mWm-2) than commercial platinum catalyst (140mWm-2) and unmodified FePc/MON (90mWm-2), which is consistent with the RRDE study.The improvement was due to two mechanisms which abate H2O2 release from the composite. H2O2 is the reactant in two processes: (i) chemical regeneration of MnOx after electro-reduction to Mn2+, and (ii) peroxide undergoing chemical disproportionation to O2 and H2O on an electrochemically aged manganese surface retained in the film. Process (i) has the potential to sustain electrochemical reduction of MnOx at cathode potentials as high as 1.0VRHE

    Improving the stability, selectivity, and cell voltage of a bipolar membrane zero-gap electrolyzer for low-loss CO2 reduction

    No full text
    Electrolyzers for CO2 reduction containing bipolar membranes (BPM) are promising due to low loss of CO2 as carbonates and low product crossover, but improvements in product selectivity, stability, and cell voltage are required. In particular, direct contact with the acidic cation exchange layer leads to high levels of H2 evolution with many common cathode catalysts. Here, Co phthalocyanine (CoPc) is reported as a suitable catalyst for a zero-gap BPM device, reaching 53% Faradaic efficiency to CO at 100 mA cm−2 using only pure water and CO2 as the input feeds. It is also shown that the cell voltage can be lowered by constructing a customized BPM using TiO2 water dissociation catalyst, however this is at the cost of decreased selectivity. Switching the pure-water anolyte to KOH improved both the cell voltage and CO selectivity (62% at 200 mA cm−2), but cation crossover could cause complications. The results demonstrate viable strategies for improving a BPM CO2 electrolyzer toward practical-scale CO2-to-chemicals conversion.</p

    Data - Redox mediators for enhanced azo dye degradation (International Journal of Hydrogen Energy)

    No full text
    Data for the figures of the manuscript accepted by the International Journal of Hydrogen Energy on effect of redox mediator for cathode electron transfer to enhance azo dye degradation

    Parameters influencing the development of highly conductive and efficient biofilm during microbial electrosynthesis: the importance of applied potential and inorganic carbon source

    No full text
    Cathode-driven applications of bio-electrochemical systems (BESs) have the potential to transform CO2 into value-added chemicals using microorganisms. However, their commercialisation is limited as biocathodes in BESs are characterised by slow start-up and low efficiency. Understanding biosynthesis pathways, electron transfer mechanisms and the effect of operational variables on microbial electrosynthesis (MES) is of fundamental importance to advance these applications of a system that has the capacity to convert CO2 to organics and is potentially sustainable. In this work, we demonstrate that cathodic potential and inorganic carbon source are keys for the development of a dense and conductive biofilm that ensures high efficiency in the overall system. Applying the cathodic potential of −1.0 V vs. Ag/AgCl and providing only gaseous CO2 in our system, a dense biofilm dominated by Acetobacterium (ca. 50% of biofilm) was formed. The superior biofilm density was significantly correlated with a higher production yield of organic chemicals, particularly acetate. Together, a significant decrease in the H2 evolution overpotential (by 200 mV) and abundant nifH genes within the biofilm were observed. This can only be mechanistically explained if intracellular hydrogen production with direct electron uptake from the cathode via nitrogenase within bacterial cells is occurring in addition to the commonly observed extracellular H2 production. Indeed, the enzymatic activity within the biofilm accelerated the electron transfer. This was evidenced by an increase in the coulombic efficiency (ca. 69%) and a 10-fold decrease in the charge transfer resistance. This is the first report of such a significant decrease in the charge resistance via the development of a highly conductive biofilm during MES. The results highlight the fundamental importance of maintaining a highly active autotrophic Acetobacterium population through feeding CO2 in gaseous form, which its dominance in the biocathode leads to a higher efficiency of the system

    Enhanced bio-production from CO2 by microbial electrosynthesis (MES) with continuous operational mode

    No full text
    Technologies able to convert CO2 to various feedstocks for fuels and chemicals are emerging due to the urge of reducing greenhouse gas emissions and de-fossilizing chemical production. Microbial electrosynthesis (MES) has been shown a promising technique to synthesize organic products particularly acetate using microorganisms and electrons. However, the efficiency of the system is low. In this study, we demonstrated the simple yet efficient strategy in enhancing the efficiency of MES by applying continuous feeding regime. Compared to the fed-batch system, continuous operational mode provided better control of pH and constant medium refreshment, resulting in higher acetate production rate and more diverse bio-products, when the cathodic potential of -1.0 V Ag/AgCl and dissolved CO2 were provided. It was observed that hydraulic retention time (HRT) had a direct effect on the pattern of production, acetate production rate and coulombic efficiency. At HRT of 3 days, pH was around 5.2 and acetate was the dominant product with the highest production rate of 651.8 ± 214.2 ppm day-1 and a significant coulombic efficiency of 90%. However at the HRT of 7 days, pH was lower at around 4.5, and lower but stable acetate production rate of 280 ppm day-1 and a maximum coulombic efficiency of 80% was obtained. In addition, more diverse and longer chain products, such as butyrate, isovalerate and caproate, were detected with low concentrations only at the HRT of 7 days. Although microbial community analysis showed the change in the planktonic cells communities after switching the fed-batch mode to continuous feeding regime, Acetobacterium still remained as the responsible bacteria for CO2 reduction to acetate, dominating the cathodic biofilm.</p

    The effect of the polarised cathode, formate and ethanol on chain elongation of acetate in microbial electrosynthesis

    No full text
    Reduction of CO2 to acetate in microbial electrosynthesis has been widely studied. However, the selective and quantitative production of longer chain chemicals and biofuels is still a bottleneck. Lack of sufficient energy provided by only the cathode electrode in Bio-electrochemical systems during chain elongation is one of the key challenges. It is assumed that additional electron donors than a polarised cathode is required to steer the production towards longer chain of carboxylates than acetate. In this study, formate and ethanol were supplied separately in the reactors fed by CO2 for 45 days in addition to the cathodes poised at −1.0 V vs. Ag/AgCl to investigate their effect on production. Although acetate was still the major product, supplying electron donors directed the production towards more diverse and longer chain organic chemicals than that in presence of the polarised cathode only. Significant improvement in the production of butyrate (×3.8 increase in maximum concentration) and butanol (maximum of 6.8 ± 0.3 mmol C L−1) was observed after supplying formate, while ethanol increased the diversity of the products. Supplying formate and ethanol in reactors for another 30 days under open circuit potential clarified that only ethanol could provide sufficient energy for butyrate production from acetate in the absence of polarised cathode, which reached the highest butyrate concentration of 19.1 ± 2.3 mmol C L−1. Formate was only consumed in presence of polarised cathode. It is proposed in our study that production of C4 products in presence of only cathodic electrode or cathodic electrode and formate could be associated to initial reduction of acetate to ethanol, consumed for production of C4 products through acetate. Trace levels of caproate and hexanol were detected in both reactors supplied with formate and ethanol only in the presence of polarised cathode

    Zero-gap bipolar membrane electrolyzer for carbon dioxide reduction using acid-tolerant molecular electrocatalysts

    Get PDF
    The scaling-up of electrochemical CO2 reduction requires circumventing the CO2 loss as carbonates under alkaline conditions. Zero-gap cell configurations with a reverse-bias bipolar membrane (BPM) represent a possible solution, but the catalyst layer in direct contact with the acidic environment of a BPM usually leads to H2 evolution dominating. Here we show that using acid-tolerant Ni molecular electrocatalysts selective (>60%) CO2 reduction can be achieved in a zero-gap BPM device using a pure water and CO2 feed. At a higher current density (100 mA cm-2), CO selectivity decreases, but was still >30%, due to reversible product inhibition. This study demonstrates the importance of developing acid-tolerant catalysts for use in large-scale CO2 reduction devices.</p
    corecore