6 research outputs found

    Methicillin-resistant Staphylococcus aureus in Veterinary Doctors and Students, the Netherlands

    Get PDF
    The prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in the Netherlands, at 1.0%, is among the lowest in Europe. In 2004, a relationship between pig farming and a high risk for MRSA carriage was found. To investigate if those in professional contact with livestock are at higher risk for MRSA carriage, we screened 80 veterinary students and 99 veterinarians and questioned them about animal contacts and known MRSA risk factors. Of these, 27 students who did not have livestock contact were excluded from further analysis. We found 7 carriers of MRSA, a prevalence of 4.6%, which is similar to that found in patients who had previously been treated at foreign hospitals. A correlation of MRSA carriage with a specific animal group could not be established. To preserve the low prevalence of MRSA in the Netherlands, persons involved in the care of livestock should be isolated and screened on admission to the hospital

    Evaluation of the Abbott Panbioâ„¢ COVID-19 antigen detection rapid diagnostic test among healthcare workers in elderly care

    Get PDF
    BACKGROUND: Coronavirus disease 2019 (COVID-19) has been especially dangerous for elderly people. To reduce the risk of transmission from healthcare workers to elderly people, it is of utmost importance to detect possible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive healthcare workers as early as possible. We aimed to determine whether the Abbott Panbio™ COVID-19 antigen detection rapid diagnostic test (Ag-RDT) could be used as an alternative to reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The second aim was to compare the cycle threshold (Ct) in RT-qPCR with the results of the Ag-RDT. METHODS: A prospective diagnostic evaluation of the Abbott Panbio™ COVID-19 Ag-RDT among healthcare workers across three elderly care facilities as well as home-based elderly care workers who met clinical criteria for COVID-19 during the second wave of the COVID-19 pandemic. Per healthcare worker, the first nasopharyngeal swab was obtained to perform the Ag-RDT and the second swab for RT-qPCR. A Ct-value of < 40 was interpreted as positive, ≥ 40 as negative. RESULTS: A total of 683 healthcare workers with COVID-19 symptoms were sampled for detection of SARS-CoV-2 by both Ag-RDT and RT-qPCR. Sixty-three healthcare workers (9.2%) tested positive for SARS-CoV-2 by RT-qPCR. The overall sensitivity of Ag-RDT was 81.0% sensitivity (95%CI: 69.6-88.8%) and 100% specificity (95%CI: 99.4-100%). Using a cut-off Ct-value of 32, the sensitivity increased to 92.7% (95% CI: 82.7-97.1%). Negative Ag-RDT results were moderately associated with higher Ct-values (r = 0.62) compared to positive Ag-RDT results. CONCLUSION: The Panbio™ COVID-19 Ag-RDT can be used to quickly detect positive SARS-CoV-2 healthcare workers. Negative Ag-RDT should be confirmed by RT-qPCR. In case of severe understaffing and with careful consideration, fully vaccinated healthcare workers with Ag-RDT negative results could work with a mask pending PCR results

    Evaluation of the Abbott Panbioâ„¢ COVID-19 antigen detection rapid diagnostic test among healthcare workers in elderly care.

    No full text
    BACKGROUND: Coronavirus disease 2019 (COVID-19) has been especially dangerous for elderly people. To reduce the risk of transmission from healthcare workers to elderly people, it is of utmost importance to detect possible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive healthcare workers as early as possible. We aimed to determine whether the Abbott Panbio™ COVID-19 antigen detection rapid diagnostic test (Ag-RDT) could be used as an alternative to reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The second aim was to compare the cycle threshold (Ct) in RT-qPCR with the results of the Ag-RDT. METHODS: A prospective diagnostic evaluation of the Abbott Panbio™ COVID-19 Ag-RDT among healthcare workers across three elderly care facilities as well as home-based elderly care workers who met clinical criteria for COVID-19 during the second wave of the COVID-19 pandemic. Per healthcare worker, the first nasopharyngeal swab was obtained to perform the Ag-RDT and the second swab for RT-qPCR. A Ct-value of < 40 was interpreted as positive, ≥ 40 as negative. RESULTS: A total of 683 healthcare workers with COVID-19 symptoms were sampled for detection of SARS-CoV-2 by both Ag-RDT and RT-qPCR. Sixty-three healthcare workers (9.2%) tested positive for SARS-CoV-2 by RT-qPCR. The overall sensitivity of Ag-RDT was 81.0% sensitivity (95%CI: 69.6-88.8%) and 100% specificity (95%CI: 99.4-100%). Using a cut-off Ct-value of 32, the sensitivity increased to 92.7% (95% CI: 82.7-97.1%). Negative Ag-RDT results were moderately associated with higher Ct-values (r = 0.62) compared to positive Ag-RDT results. CONCLUSION: The Panbio™ COVID-19 Ag-RDT can be used to quickly detect positive SARS-CoV-2 healthcare workers. Negative Ag-RDT should be confirmed by RT-qPCR. In case of severe understaffing and with careful consideration, fully vaccinated healthcare workers with Ag-RDT negative results could work with a mask pending PCR results

    A practice guide on antimicrobial stewardship in nursing homes

    No full text
    Abstract A practice guide to help nursing homes set up an antimicrobial stewardship (AMS) program was developed based on experiences gained during a project at one of the largest providers of elderly care in the South-east of the Netherlands. The guideline for the implementation of AMS in Dutch hospitals served as a starting point and were tailored to the unique characteristics of a nursing home setting. This practice guide offers recommendations and practical tools while emphasizing the importance of establishing a multidisciplinary approach to oversee AMS efforts. The recommendations and practical tools address various elements of AMS, including the basic conditions to initiate an AMS program and a comprehensive approach to embed an AMS program. This approach involves educating nurses and caregivers, informing volunteers and residents/their representatives, and the activities of an antibiotic team (A-team). The practice guide also highlights a feasible work process for the A-team. This process aims to achieve a culture of continuous learning and improvement that can enhance the overall quality of antibiotic prescribing rather than making individual adjustments to client prescriptions. Overall, this practice guide aims to help nursing homes establish an AMS program through collaborative efforts between involved physicians, pharmacists, clinical microbiologists, and infection control practitioners. The involved physician plays a crucial role in instilling a sense of urgency and developing a stepwise strategy
    corecore