23 research outputs found

    Validation of the oxygen desaturation index in the diagnostic workup of obstructive sleep apnea

    Get PDF
    Introduction: Obstructive sleep apnea (OSA) is common, and diagnosis requires expensive and laborious testing to assess the apnea hypopnea index (AHI). We performed an analysis to explore the relationship between the oxygen desaturation index (ODI) as measured with pulse oximetry and the AHI in our large portable monitoring (PM) database to find an optimal cutoff value for the ODI in order to be able to exclude AHI ≥ 5 on PM. Methods: Three thousand four hundred thirteen PM recordings were randomly divided into a training set (N = 2281) and a test set (N = 1132). The optimal cutoff for the ODI to exclude an AHI ≥ 5 on PM was determined in the training set and subsequently validated in the test set. Results: Area under the curve of the ODI to exclude an AHI ≥ 5 on PM was 0.997 in the training set and 0.996 in the test set. In the training set, the optimal cutoff to predict an AHI < 5 was an ODI < 5. Using this cutoff in the test set provided a sensitivity of 97.7%, a specificity of 97.0%, a positive predictive value of 99.2%, and a negative predictive value of 91.4%. Conclusion: An ODI < 5 predicts an AHI < 5 with high sensitivity and specificity when measured simultaneously using the same oximeter during PM recording

    Reproducibility of hypercapnic ventilatory response measurements with steady-state and rebreathing methods

    Get PDF
    In this study, the hypercapnic ventilatory response (HCVR) was measured, defined as the ventilation response to carbon dioxide tension (PCO2). We investigated which method, rebreathing or steady-state, is most suitable for measurement of the HCVR in healthy subjects, primarily based on reproducibility. Secondary outcome parameters were subject experience and duration. 20 healthy adults performed a rebreathing and steady-state HCVR measurement on two separate days. Subject experience was assessed using numeric rating scales (NRS). The intraclass correlation coefficient (ICCs) of the sensitivity to carbon dioxide above the ventilatory recruitment threshold and the projected apnoea threshold were calculated to determine the reproducibility of both methods. The ICCs of sensitivity were 0.89 (rebreathing) and 0.56 (steady-state). The ICCs of the projected apnoea threshold were 0.84 (rebreathing) and 0.25 (steady-state). The steady-state measurement was preferred by 16 out of 20 subjects; the differences in NRS scores were small. The hypercapnic ventilatory response measured using the rebreathing setup provided reproducible results, while the steady-state method did not. This may be explained by high variability in end-tidal PCO2. Differences in subject experience between the methods are small

    Reproducibility of hypercapnic ventilatory response measurements with steady-state and rebreathing methods

    No full text
    In this study, the hypercapnic ventilatory response (HCVR) was measured, defined as the ventilation response to carbon dioxide tension (PCO2). We investigated which method, rebreathing or steady-state, is most suitable for measurement of the HCVR in healthy subjects, primarily based on reproducibility. Secondary outcome parameters were subject experience and duration. 20 healthy adults performed a rebreathing and steady-state HCVR measurement on two separate days. Subject experience was assessed using numeric rating scales (NRS). The intraclass correlation coefficient (ICCs) of the sensitivity to carbon dioxide above the ventilatory recruitment threshold and the projected apnoea threshold were calculated to determine the reproducibility of both methods. The ICCs of sensitivity were 0.89 (rebreathing) and 0.56 (steady-state). The ICCs of the projected apnoea threshold were 0.84 (rebreathing) and 0.25 (steady-state). The steady-state measurement was preferred by 16 out of 20 subjects; the differences in NRS scores were small. The hypercapnic ventilatory response measured using the rebreathing setup provided reproducible results, while the steady-state method did not. This may be explained by high variability in end-tidal PCO2. Differences in subject experience between the methods are small

    Obstructive Sleep Apnea Syndrome in Company Workers: Development of a Two-Step Screening Strategy with a New Questionnaire

    Get PDF
    STUDY OBJECTIVES: To develop and evaluate a screening questionnaire and a two-step screening strategy for obstructive sleep apnea syndrome (OSAS) in healthy workers. DESIGN: Cross-sectional study. SETTING AND PARTICIPANTS: A total of 1,861 employees comprising healthy blue- and white-collar workers in two representative plants in the Netherlands from a worldwide consumer electronic company were approached to participate. INTERVENTIONS: Employees were invited to complete various sleep questionnaires, and undergo separate single nasal flow recording and home polysomnography on 2 separate nights. MEASUREMENTS AND RESULTS: Of the 1,861 employees, 249 provided informed consent and all nasal flow and polysomnography data were available from 176 (70.7%). OSAS was diagnosed in 65 (36.9%). A combination of age, absence of insomnia, witnessed breathing stops, and three-way scoring of the Berlin and STOPBANG questionnaires best predicted OSAS. Factor analysis identified a six-factor structure of the resulting new questionnaire: snoring, snoring severity, tiredness, witnessed apneas, sleep quality, and daytime well-being. Subsequently, some questions were removed, and the remaining questions were used to construct a new questionnaire. A scoring algorithm, computing individual probabilities of OSAS as high, intermediate, or low risk, was developed. Subsequently, the intermediate risk group was split into low and high probability for OSAS, based on nasal flow recording. This two-step approach showed a sensitivity of 63.1%, and a specificity of 90.1%. Specificity is important for low prevalence populations. CONCLUSION: A two-step screening strategy with a new questionnaire and subsequent nasal flow recording is a promising way to screen for OSAS in a healthy worker populatio

    Retrospective validation of a new volumetric capnography parameter for the exclusion of pulmonary embolism at the emergency department

    Get PDF
    Volumetric capnography might be used to exclude pulmonary embolism (PE) without the need for computed tomography pulmonary angiography. In a pilot study, a new parameter (CapNoPE) combining the amount of carbon dioxide exhaled per breath (carbon dioxide production (VCO2)), the slope of phase 3 of the volumetric capnogram (slope 3) and respiratory rate (RR) showed promising diagnostic accuracy (where CapNoPE=(VCO2×slope 3)/RR). To retrospectively validate CapNoPE for the exclusion of PE, the volumetric capnograms of 205 subjects (68 with PE) were analysed, based on a large multicentre dataset of volumetric capnograms from subjects with suspected PE at the emergency department. The area under the curve (AUC) of the receiver operating characteristic (ROC) curve and diagnostic accuracy of the in-pilot established threshold (1.90 Pa·min) were calculated. CapNoPE was 1.56±0.97 Pa·min in subjects with PE versus 2.51±1.67 Pa·min in those without PE (p<0.001). The AUC of the ROC curve was 0.714 (95% CI 0.64–0.79). For the cut-off of ≥1.90 Pa·min, sensitivity was 64.7%, specificity was 59.9%, the negative predictive value was 77.4% and the positive predictive value was 44.4%. The CapNoPE parameter is decreased in patients with PE but its diagnostic accuracy seems too low to use in clinical practice

    Sleep position trainer versus tennis ball technique in positional obstructive sleep apnea syndrome

    Get PDF
    Study Objective Positional therapy (PT) is an effective therapy in positional obstructive sleep apnea syndrome (POSAS) when used, but the compliance of PT is low. The objective of this study was to investigate whether a new kind of PT is effective and can improve compliance. Methods 29 patients were treated with the sleep position trainer (SPT), 26 patients with the tennis ball technique (TBT). At baseline and 1 month polysomnography, Epworth Sleepiness Scale (ESS) and the Quebec Sleep Questionnaire (QSQ) were taken. Daily compliance was objectively measured in both groups. Results Both therapies prevent supine sleep position to a median of 0% (min-max: SPT 0.0% to 67%, TBT 0.0% to 38.9%), resulting in a treatment success (AHI < 5) in 68.0% of the SPT and 42.9% of the TBT patients. The ESS at baseline was < 10 in both groups. Sleep quality parameters, such as wake after sleep onset (WASO; p = 0.001) and awakenings (p = 0.006), improved more in the SPT group. Total QSQ scores (0.4 ± 0.2, p = 0.03), the QSQ domains nocturnal symptoms (0.7 ± 0.2, p = 0.01), and social interactions (0.8 ± 0.3, p = 0.02) changed in favor of the SPT group. Effective compliance (≥ 4 h/night + ≥ 5 days/week) was 75.9% for the SPT and 42.3% for the TBT users (p = 0.01). Conclusion In mild POSAS with normal EES the new SPT device and the standard TBT are equally effective in reducing respiratory indices. However, compared to the TBT, sleep quality, quality of life, and compliance improved significantly more in the SPT group
    corecore