33 research outputs found

    Staging of cortical and deep grey matter functional connectivity changes in multiple sclerosis

    No full text
    OBJECTIVE: Functional connectivity is known to increase as well as decrease throughout the brain in multiple sclerosis (MS), which could represent different stages of the disease. In addition, functional connectivity changes could follow the atrophy pattern observed with disease progression, that is, moving from the deep grey matter towards the cortex. This study investigated when and where connectivity changes develop and explored their clinical and cognitive relevance across different MS stages. METHODS: A cohort of 121 patients with early relapsing-remitting MS (RRMS), 122 with late RRMS and 53 with secondary progressive MS (SPMS) as well as 96 healthy controls underwent MRI and neuropsychological testing. Functional connectivity changes were investigated for (1) within deep grey matter connectivity, (2) connectivity between the deep grey matter and cortex and (3) within-cortex connectivity. A post hoc regional analysis was performed to identify which regions were driving the connectivity changes. RESULTS: Patients with late RRMS and SPMS showed increased connectivity of the deep grey matter, especially of the putamen and palladium, with other deep grey matter structures and with the cortex. Within-cortex connectivity was decreased, especially for temporal, occipital and frontal regions, but only in SPMS relative to early RRMS. Deep grey matter connectivity alterations were related to cognition and disability, whereas within-cortex connectivity was only related to disability. CONCLUSION: Increased connectivity of the deep grey matter became apparent in late RRMS and further increased in SPMS. The additive effect of cortical network degeneration, which was only seen in SPMS, may explain the sudden clinical deterioration characteristic to this phase of the disease

    The cerebellum and its network: Disrupted static and dynamic functional connectivity patterns and cognitive impairment in multiple sclerosis

    No full text
    Background: The impact of cerebellar damage and (dys)function on cognition remains understudied in multiple sclerosis. Objective: To assess the cognitive relevance of cerebellar structural damage and functional connectivity (FC) in relapsing-remitting multiple sclerosis (RRMS) and secondary progressive multiple sclerosis (SPMS). Methods: This study included 149 patients with early RRMS, 81 late RRMS, 48 SPMS and 82 controls. Cerebellar cortical imaging included fractional anisotropy, grey matter volume and resting-state functional magnetic resonance imaging (MRI). Cerebellar FC was assessed with literature-based resting-state networks, using static connectivity (that is, conventional correlations), and dynamic connectivity (that is, fluctuations in FC strength). Measures were compared between groups and related to disability and cognition. Results: Cognitive impairment (CI) and cerebellar damage were worst in SPMS. Only SPMS showed cerebellar connectivity changes, compared to early RRMS and controls. Lower static FC was seen in fronto-parietal and default-mode networks. Higher dynamic FC was seen in dorsal and ventral attention, default-mode and deep grey matter networks. Cerebellar atrophy and higher dynamic FC together explained 32% of disability and 24% of cognitive variance. Higher dynamic FC was related to working and verbal memory and to information processing speed. Conclusion: Cerebellar damage and cerebellar connectivity changes were most prominent in SPMS and related to worse CI

    Determinants of Cognitive Impairment in Patients with Multiple Sclerosis with and without Atrophy

    No full text
    Purpose To investigate the discrepancy between patients with multiple sclerosis (MS) without atrophy who have already developed cognitive impairment and patients with MS with atrophy who have preserved cognitive function. Materials and Methods This retrospective imaging study, with imaging acquired between 2008 and 2012, included 332 patients with MS (106 men and 226 women; mean age, 48.1 years; range, 23.0-72.5 years) and 96 healthy control participants. Cognitive impairment was defined as cognitive performance of z less than -1.5 compared with that in control participants in greater than or equal to two cognitive domains. Atrophy was defined as cortical and deep gray matter volumes of z less than -1.5 compared with that in control participants. White matter lesions were assessed with T2-imaging, tract fractional anisotropy (ie, integrity) with diffusion MRI, and regional centrality (ie, importance within network) with functional MRI. Within each atrophy group, patients with cognitive impairment and preserved cognitive function were compared and regression analyses were performed to predict cognitive impairment. Results A total of 132 of 328 patients with MS had no atrophy; of these, 42 of 132 (32%) had cognitive impairment. Cognitive impairment in patients without atrophy was predicted by level of education (Wald test, 11.63; P < .01) and posterior cingulate centrality (Wald test, 6.82; P < .01). A total of 65 of 328 patients with MS had atrophy; of these, 49 of 65 (75%) had cognitive impairment. Cognitive impairment in patients with atrophy was predicted by white matter tract fractional anisotropy (Wald test, 4.89; P = .03) and posterior cingulate centrality (Wald test, 7.19; P < .01). Conclusion Cognitive impairment was related to white matter damage, but only in patients with MS with atrophy. In patients without atrophy, a lower level of education was most important for cognitive impairment. Posterior cingulate cortex showed functional abnormalities in all MS groups with cognitive impairment, regardless of atrophy
    corecore