16 research outputs found

    Isoforms of transferrin in psoriasis patients abusing alcohol

    Get PDF
    The different isoforms of transferrin have been quantified by isoelectric focusing in the sera of psoriasis patients with and without a history of abusing alcohol. In both male and female psoriasis subjects abusing alcohol, there were significant increases in the 2-sialylated forms by comparison to the control subjects. Psoriasis patients who had no evidence of alcohol abuse had similar profile for the isoforms of transferrin to that of the controls. Other groups of patients with alcohol-induced tissue damage, i.e. liver, brain or muscle, used as positive controls, similarly showed significant increases in the 2-sialylated forms, by comparison to controls. These results substantiate the current use of carbohydrate-deficient transferrin as a sensitive marker of alcohol abuse, particularly in subjects not drinking in excess of 60 g of ethanol/day but showing alcohol-related psoriasis

    Transferrin receptor expression and the regulation of placental iron uptake

    Get PDF
    Placental transferrin receptors, located at the apical side of syncytiotrophoblast, mediate placental iron uptake. Regulation of transferrin receptors on the fetal-maternal exchange area could be a major determinant in the regulation of trans-placental iron transport. Transferrin receptor expression in cultured human term cytotrophoblasts is on a much lower level than in choriocarcinoma cells, with a higher proportion of receptors located on the cell surface. Differentiation of cells, either due to longer culture periods or to 8-bromo-cAMP treatment does not lead to an increase of transferrin receptor expression. In vitro, the level of expression is largely regulated by the cellular density in the culture dishes. Low cellular occupancy of the dish leads to a high level of transferrin receptors. Treatment with iron-sources results in a down regulation of transferrin receptors. Thus, though the level of transferrin receptors in cultured normal trophoblast is at a constant level, unaffected by differentiation, high levels of maternal transferrin-iron availability can lead to a decrease in placental iron uptake. This feed-back mechanism makes placental iron uptake independent of maternal iron stores

    Transferrin microheterogeneity as a probe in normal and disease states

    Get PDF
    Isoelectric focusing of iron saturated serum has been established as a convenient method for showing transferrin glycan microheterogeneity. In a clinical setting, the method is used in the detection of cerebrospinal fluid leakage, the screening for surreptitious alcohol abuse and in the diagnosis of the carbohydrate deficient glycoprotein syndrome. In normal physiological states it can also be used as a tool to probe for changes in N-glycosylation

    Anaemia of chronic disease in rheumatoid arthritis - Raised serum interleukin-6 (IL-6) levels and effects of IL-6 and anti-IL-6 on in vitro erythropoiesis

    Get PDF
    Serum and bone marrow from 21 patients with rheumatoid arthritis (RA) were studied in order to establish the pathogenetic role of interleukin-6 (IL-6) in anemia of chronic disease (ACD). Erythroid colony growth, using burst forming units of erythroblasts (BFUe) as a parameter, was impaired in ACD and not in nonanemic RA controls. Serum IL-6 was elevated in ACD and it correlated well with parameters of disease activity such as erythrocyte sedimentation rate and C-reactive protein. IL-6 addition to bone marrow cultures had inconsistent effects while anti-IL-6 addition resulted in impaired erythroid colony growth, suggesting stimulatory effects of IL-6 produced in the medium, which may be masked by simultaneous production of cytokines with suppressive effects. It was concluded that elevated serum IL-6 in ACD reflects disease activity. It probably plays no pathogenetic role in ACD. Its stimulatory effects on erythroid growth might counteract suppressive effects of other interleukins

    Regulation of transferrin receptor synthesis by human cytotrophoblast cells in culture

    Get PDF
    The aim of this study was to examine the capacity of the syncytiotrophoblast to regulate transferrin receptor (TfR) synthesis in response to modulations in maternal iron supply. The model used was the primary trophoblast cell culture. Trophoblast cells isolated from term human placentas were cultured in iron-poor (Medium 199), iron-depleted (desferrioxamine (DFO)) and iron supplemented (diferric transferrin (hTf-2Fe), ferric ammonium citrate (FAG)) medium. TfR synthesis was reduced in response to hTf-2Fe supplementation. FAC did not modulate TfR synthesis. Iron deprivation by DFO resulted in clear stimulation of TfR synthesis. These results show that the differentiating trophoblast cells respond to pertubations in the (transferrin-mediated) iron supply by adjustments in the rate of TfR synthesis. Taking syncytiotrophoblast in culture as model for the maternal/fetal interface in vivo, our results would suggest that the placenta is able to make short term adjustments of the capacity for iron uptake

    Differential inhibition of macrophage proliferation by anti-transferrin receptor antibody ER-MP21: correlation to macrophage differentiation stage

    Get PDF
    Abstract Monoclonal antibodies (mAbs) directed against the transferrin receptor are known to inhibit proliferation of cells due to iron deprivation. Some cell types, however, escape from growth inhibition by a mechanism which is unclear at present. This mechanism is the subject of the present study. We investigated the differential growth inhibition caused by anti-transferrin receptor mAb ER-MP21 in connection with the differentiation of murine macrophages (Mφ). Therefore, we applied two models of Mφ differentiation, namely, culture of bone marrow cells in the presence of M-CSF and a panel of Mφ cell lines ordered in a linear differentiation sequence. In both models we observed that proliferation of Mφ precursors was strongly inhibited by ER-MP21. In contrast, proliferation of more mature stages of Mφ differentiation was hardly affected. Remarkably, iron uptake by Mφ precursor and mature Mφ cell lines was inhibited by ER-MP21 to the same extent. However, mature Mφ cell lines showed an iron uptake two-to threefold higher than that of Mφ precursor cell lines. These observations strongly suggest that mature Mφ escape from ER-MP21-mediated growth inhibition, because these cells take up more iron than is actually needed for proliferation. Furthermore, we found that enhanced iron uptake by mature Mφ is not necessarily accompanied by a higher cell surface expression of transferrin receptors, thus suggesting an increased recycling of transferrin receptors in mature Mφ

    New developments and applications in quantitative electron spectroscopic imaging of iron in human liver biopsies

    Get PDF
    Reliable iron concentration data can be obtained by quantitative analyses of image sequences, acquired by electron spectroscopic imaging. A number of requirements are formulated for the successful application of this recently developed in situ quantitative type of analysis. A demonstration of the procedures is given. By application of the technique it is established that there are no significant differences in the average iron loading of structures analysed in liver parenchymal cells of a patient with an iron storage disease, before and after phlebotomy. This supports the hypothesis that the process of iron unloading is an organelle specific process. Measurement of the binary morphology, represented by the area and contour ratio of the iron containing objects revealed no information about differences between the objects. This finding contradicts the visual suggestion that ferritin clusters are more irregularly shaped than the other iron objects. Also, no differences could be found in this sense between the situations before and after phlebotomy. With respect to the density appearance, objects that have an inhomogeneous iron loading averagely contain more iron. This observation does correspond well with the visual impression of the increasingly irregular appearance of more well-loaded structures

    Adaptation of transferrin protein and glycan synthesis

    Get PDF
    We report the patterns of variability in transferrin structure in pregnancy, iron deficiency anemia, women using oral contraceptives, nonanaemic rheumatoid arthritis, iron deficient rheumatoid arthritis and anemia of the chronic diseases. Changes in microheterogeneity were assessed by crossed immuno isoelectric focusing of serum transferrin. Intra-individual variation in the control group was minimal. Equally, inter-individual variation in controls and groups with established stable disease was very limited. In pregnancy an increase in transferrin concentration was accompanied by redirection of glycan synthesis to the highly sialylated and highly branched glycans, an effect also shown in women using oral contraceptives. Iron deficiency anemia was accompanied by increased protein core synthesis without the large shifts in the microheterogeneity pattern as seen in pregnancy at similar transferrin concentration. In contrast to this, rheumatoid arthritis was accompanied by decreased protein synthesis while the microheterogeneity pattern shifted significantly towards the highly branched glycans. Interpreted in the respective pathophysiological contexts results show that: (1) N-linked glycosylation of transferrin is a strictly controlled process, both in the physiological states and in disease. (2) Microheterogeneity is determined independently from transferrin protein synthetic rate. (3) Provisionally observed changes in the glycosylation can modulate the biological activity of the glycoprotein and as a result redirect internal iron fluxes. This proposition can be applied to altered iron metabolism in both pregnancy, oral contraceptives and rheumatoid arthritis. Changes are not operative in iron deficiency because qualitatively iron metabolism is not altered in this state

    Isolation and partial characterization of two porcine spleen ferritin fractions with different electrophoretic mobility

    Get PDF
    Ferritin isolated from porcine spleen could routinely be separated in two fractions on nondenaturating gradient gels. Both fractions could be isolated with a purity of 96% when applied to two serially linked columns, each 200 cm in length, packed respectively with Sepharose 4B and Sepharose 6B. Both fractions were similar as judged by electron microscopy. Assessed biochemically fractions were equal with respect to subunit composition, iron and phosphorus content, as well as amino acid composition (with the exception of N-acetylglucosamine). Carbohydrate analysis showed that the fraction with an apparent mass of 440 kDa (=FFL) contained 1.8% (w/w) glycans, whereas the fraction with an apparent mass of 670 kDa (=FFH) contained nearly five times as much (neutral) sugar residues (8.9%, w/w) and 10 times as much sialic acid. This difference in amount of carbohydrate side chains might explain the dissimilarity in electrophoretic mobility of the two fractions

    Ferritin accumulation and uroporphyrin crystal formation in hepatocytes of C57BL/10 mice: A time-course study

    Get PDF
    To establish the time-sequence relationship between ferritin accumulation and uroporphyrin crystal formation in livers of C57BL/10 mice, a biochemical, morphological and morphometrical study was performed. Uroporphyria was induced by the intraperitoneal administration of hexachlorobenzene plus iron dextran and of iron dextran alone. Uroporphyrin crystal formation started in hepatocytes of mice treated with hexachlorobenzene plus iron dextran at 2 weeks and in mice treated with iron dextran alone at 9 weeks. In the course of time, uroporphyrin crystals gradually increased in size. Uroporphyrin crystals were initially formed in hepatocytes in the periportal areas of the liver, in which also ferric iron staining was first detected. The amount and the distribution of the main storage form of iron in hepatocytes, ferritin, did not differ between the two treatment groups. Ferritin accumulation preceded the formation of uroporphyrin crystals in hepatocytes in both treatment groups. Moreover, uroporphyrin crystals were nearly always found close to ferritin iron. We conclude that uroporphyrin crystals are only formed in hepatocytes in which also iron (ferritin) accumulates. Hexachlorobenzene accelerates the effects of iron in porphyrin metabolism, but does not influence the accumulation of iron into the liver
    corecore