94 research outputs found

    GEneSTATION 1.0: A Synthetic Resource of Diverse Evolutionary and Functional Genomic Data for Studying The Evolution of Pregnancy-Associated Tissues and Phenotypes

    Get PDF
    Mammalian gestation and pregnancy are fast evolving processes that involve the interaction of the fetal, maternal and paternal genomes. Version 1.0 of the GEneSTATION database (http://genestation.org) integrates diverse types of omics data across mammals to advance understanding of the genetic basis of gestation and pregnancy-associated phenotypes and to accelerate the translation of discoveries from model organisms to humans. GEneSTATION is built using tools from the Generic Model Organism Database project, including the biology-aware database CHADO, new tools for rapid data integration, and algorithms that streamline synthesis and user access. GEneSTATION contains curated life history information on pregnancy and reproduction from 23 high-quality mammalian genomes. For every human gene, GEneSTATION contains diverse evolutionary (e.g. gene age, population genetic and molecular evolutionary statistics), organismal (e.g. tissue-specific gene and protein expression, differential gene expression, disease phenotype), and molecular data types (e.g. Gene Ontology Annotation, protein interactions), as well as links to many general (e.g. Entrez, PubMed) and pregnancy disease-specific (e.g. PTBgene, dbPTB) databases. By facilitating the synthesis of diverse functional and evolutionary data in pregnancy-associated tissues and phenotypes and enabling their quick, intuitive, accurate and customized meta-analysis, GEneSTATION provides a novel platform for comprehensive investigation of the function and evolution of mammalian pregnancy

    Percutaneous closure of atrial septal defects leads to normalisation of atrial and ventricular volumes

    Get PDF
    Background: Percutaneous closure of atrial septal defects (ASDs) should potentially reduce right heart volumes by removing left-to-right shunting. Due to ventricular interdependence, this may be associated with impaired left ventricular filling and potentially function. Furthermore, atrial changes post-ASD closure have been poorly understood and may be important for understanding risk of atrial arrhythmia post-ASD closure. Cardiovascular magnetic resonance (CMR) is an accurate and reproducible imaging modality for the assessment of cardiac function and volumes. We assessed cardiac volumes pre- and post-percutaneous ASD closure using CMR. Methods: Consecutive patients (n = 23) underwent CMR pre- and 6 months post-ASD closure. Steady state free precession cine CMR was performed using contiguous slices in both short and long axis views through the ASD. Data was collected for assessment of left and right atrial, ventricular end diastolic volumes (EDV) and end systolic volumes (ESV). Data is presented as mean ± SD, volumes as mL, and paired t-testing performed between groups. Statistical significance was taken as p < 0.05. Results: There was a significant reduction in right ventricular volumes at 6 months post-ASD closure (RVEDV: 208.7 ± 76.7 vs. 140.6 ± 60.4 mL, p < 0.0001) and RVEF was significantly increased (RVEF 35.5 ± 15.5 vs. 42.0 ± 15.2%, p = 0.025). There was a significant increase in the left ventricular volumes (LVEDV 84.8 ± 32.3 vs. 106.3 ± 38.1 mL, p = 0.003 and LVESV 37.4 ± 20.9 vs. 46.8 ± 18.5 mL, p = 0.016). However, there was no significant difference in LVEF and LV mass post-ASD closure. There was a significant reduction in right atrial volumes at 6 months post-ASD closure (pre-closure 110.5 ± 55.7 vs. post-closure 90.7 ± 69.3 mL, p = 0.019). Although there was a trend to a decrease in left atrial volumes post-ASD closure, this was not statistically significant (84.5 ± 34.8 mL to 81.8 ± 44.2 mL, p = NS). Conclusion: ASD closure leads to normalisation of ventricular volumes and also a reduction in right atrial volume. Further follow-up is required to assess how this predicts outcomes such as risk of atrial arrhythmias after such procedures.Karen SL Teo, Benjamin K Dundon, Payman Molaee, Kerry F Williams, Angelo Carbone, Michael A Brown, Matthew I Worthley, Patrick J Disney, Prashanthan Sanders and Stephen G Worthle

    Persistently Elevated Right Ventricular Index of Myocardial Performance in Preterm Infants with Incipient Bronchopulmonary Dysplasia

    Get PDF
    OBJECTIVES: Elevated pulmonary vascular resistance occurs during the first days after birth in all newborn infants and persists in infants at risk for bronchopulmonary dysplasia (BPD). It is difficult to measure in a non-invasive fashion. We assessed the usefulness of the right ventricular index of myocardial performance (RIMP) to estimate pulmonary vascular resistance in very low birth weight infants. STUDY DESIGN: Prospective echocardiography on day of life (DOL) 2, 7, 14, and 28 in 121 preterm infants (median [quartiles] gestational age 28 [26]-[29] weeks, birth weight 998 [743-1225] g) of whom 36 developed BPD (oxygen supplementation at 36 postmenstrual weeks). RESULTS: RIMP derived by conventional pulsed Doppler technique was unrelated to heart rate or mean blood pressure. RIMP on DOL 2 was similar in infants who subsequently did (0.39 [0.33-0.55]) and did not develop BPD (0.39 [0.28-0.51], p = 0.467). RIMP declined steadily in non-BPD infants but not in BPD infants (DOL 7: 0.31[0.22-0.39] vs. 0.35[0.29-0.48], p = 0.014; DOL 14: 0.23[0.17-0.30] vs. 0.35[0.25-0.43], p<0.001; DOL 28: 0.21[0.15-0.28] vs. 0.31 [0.21-0.35], p = 0.015). CONCLUSIONS: In preterm infants, a decline in RIMP after birth was not observed in those with incipient BPD. The pattern of RIMP measured in preterm infants is commensurate with that of pulmonary vascular resistance

    Ejection Time-Corrected Systolic Velocity Improves Accuracy in the Evaluation of Myocardial Dysfunction: A Study in Piglets

    Get PDF
    This study aimed to assess the effect of correcting for the impact of heart rate (HR) or ejection time (ET) on myocardial velocities in the long axis in piglets undergoing hypoxia. The ability to eject a higher volume at a fixed ET is a characteristic of contractility in the heart. Systolic velocity of the atrioventricular annulus displacement is directly related to volume changes of the ventricle. Both ET and systolic velocity may be measured in a single heartbeat. In 29 neonatal pigs, systolic velocity and ET were measured with tissue Doppler techniques in the mitral valve annulus, the tricuspid valve annulus, and the septum. All ejection time corrected velocities (S(ET), mean ± SEM, cm/s) decreased significantly during hypoxia (Smva(ET) 15.5 ± 0.2 to 13.2 ± 0.3 (p < 0.001), Sseptal(ET) 9.9 ± 0.1 to 7.8 ± 0.2 (p < 0.001), Stva(ET) 12.1 ± 0.2 to 9.8 ± 0.3 (p < 0.001)). The magnitude of change from baseline to hypoxia was greater for ejection time corrected systolic velocities than for RR-interval corrected velocities (mean ± SEM, cm/s); ΔSmva(ET) 2.3 ± 2.0 vs. ΔSmva(RR) 1.6 ± 1.1 (p = 0.02), ΔSseptal(ET) 2.1 ± 1.0 vs. ΔSseptal(RR) 1.6 ± 1.0 (p < 0.01), ΔStva(ET) 2.3 ± 1.1 vs. ΔStva(RR) 1.8 ± 1.3 (p = 0.04). The receiver operator characteristic (ROC) showed superior performance of S(ET) compared with uncorrected velocities. The decrease in S(ET) during hypoxia was not influenced by important hemodynamic determinants. ET-corrected systolic velocity improves accuracy and decreases variability in the evaluation of systolic longitudinal function and contractility during global hypoxia in neonatal pigs compared with systolic velocity alone. It is robust toward hemodynamic changes. This novel method has the potential of becoming a useful tool in clinical practice

    What is new in pediatric cardiac imaging?

    Get PDF
    Cardiac imaging has had significant influence on the science and practice of pediatric cardiology. Especially the development and improvements made in noninasive imaging techniques, like echocardiography and cardiac magnetic resonance imaging (MRI), have been extremely important. Technical advancements in the field of medical imaging are quickly being made. This review will focus on some of the important evolutions in pediatric cardiac imaging. Techniques such as intracardiac echocardiography, 3D echocardiography, and tissue Doppler imaging are relatively new echocardiographic techniques, which further optimize the anatomical and functional aspects of congenital heart disease. Also, the current standing of cardiac MRI and cardiac computerized tomography will be discussed. Finally, the recent European efforts to organize training and accreditation in pediatric echocardiography are highlighted

    Reference intervals for the echocardiographic measurements of the right heart in children and adolescents: a systematic review

    Get PDF
    BACKGROUND: Transthoracic echocardiography is the primary imaging modality for the diagnosis of right ventricular (RV) involvement in congenital and acquired heart diseases. There is increasing recognition of the contribution of RV dysfunction in heart diseases affecting children and adolescents, but there is insufficient information on reference intervals for the echocardiographic measurements of the right heart in children and adolescents that represent all the continental populations of the world.OBJECTIVE:The aim of this systematic review was to collate, from published studies, normative data for echocardiographic evaluation of the right heart in children and adolescents, and to identify gaps in knowledge in this field especially with respect to sub-Saharan Africans. METHODS: We performed a systematic literature search to identify studies of reference intervals for right heart measurements as determined by transthoracic echocardiography in healthy children and adolescents of school-going age. Articles were retrieved from electronic databases with a combination of search terms from the earliest date available until May 2013. RESULTS: Reference data were available for a broad range of variables. Fifty one studies out of 3096 publications were included. The sample sizes of the reference populations ranged from 13 to 2036 with ages varying from 5 to 21 years. We identified areas lacking sufficient reference data. These included reference data for determining right atrial size, tricuspid valve area, RV dimensions and areas, the RV % fractional area change, pulmonary artery pressure gradients and the right-sided haemodynamics, including the inferior vena cava dimensions and collapsibility. There were no data for sub-Saharan African children and adolescents. CONCLUSION: Reliable reference data are lacking for important echocardiographic measurements of the RV in children and adolescents, especially for sub-Saharan Africans
    corecore