4 research outputs found
Validated high performance liquid chromatographic (HPLC) method for analysis of zerumbone in plasma
Zerumbone (ZER) is a sesquiterpene derived from Zingiber zerumbet smith, family Zingiberaceae. It has been shown to possess anti-cancer and apoptosis-inducing properties against various human tumour cells as well as in vivo against a number of induced malignancies in mice. In this study a simple, specific and accurate high performance liquid chromatographic method for determination of ZER in micro-volumes human plasma (| 1.5 ml) was developed and validated. ZER and its analogue -Humuleneas internal standard were easy recovered by simple one step plasma protein precipitation using acetonitrile and separated in isocratic mobile phase, on reverse phase-C18 column. The effluent was monitored by Photodiode Array (PDA) detector and at a flow rate of 1.0 ml/min. The linearity of proposed method was 2 – 15 ìg/ml. The intra-day and inter-day coefficient of variation and percent error values of the method were less than 15% and mean recovery was more than 90% for both ZER and -Humulene. This method was found to be precise, specific, accurate and robust for detection and analysis of ZER in human plasma
Thymoquinone-loaded nanostructured lipid carriers: preparation, gastroprotection, in vitro toxicity, and pharmacokinetic properties after extravascular administration
Siddig Ibrahim Abdelwahab,1 Bassem Yousef Sheikh,2 Manal Mohamed Elhassan Taha,1 Chee Wun How,3 Rasedee Abdullah,3 Umar Yagoub,1 Rashad El-Sunousi,1 Eltayeb EM Eid31Medical Research Centre, Jazan University, Jazan, Saudi Arabia; 2Department of Surgery, College of Medicine, Taibah University, Medina, Saudi Arabia; 3Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, University Putra Malaysia, Serdang, MalaysiaBackground: Nanostructured lipid carriers (NLCs), composed of solid and liquid lipids, and surfactants are potentially good colloidal drug carriers. Thymoquinone is the main bioactive compound of Nigella sativa. In this study, the preparation, gastroprotective effects, and pharmacokinetic (PK) properties of thymoquinone (TQ)-loaded NLCs (TQNLCs) were evaluated.Method: TQNLCs were prepared using hydrogenated palm oil (Softisan® 154), olive oil, and phosphatidylcholine for the lipid phase and sorbitol, polysorbate 80, thimerosal, and double distilled water for the liquid lipid material. A morphological assessment of TQNLCs was performed using various methods. Analysis of the ulcer index, hydrogen concentration, mucus content, and biochemical and histochemical studies confirmed that the loading of TQ into the NLCs significantly improved the gastroprotective activity of this natural compound against the formation of ethanol-induced ulcers. The safety of TQNLC was tested on WRL68 liver normal cells with cisplatin as a positive control.Results: The average diameter of the TQNLCs was 75 ± 2.4 nm. The particles had negative zeta potential values of −31 ± 0.1 mV and a single melting peak of 55.85°C. Immunohistochemical methods revealed that TQNLCs inhibited the formation of ethanol-induced ulcers through the modulation of heat shock protein-70 (Hsp70). Acute hepatotoxic effects of the TQNLCs were not observed in rats or normal human liver cells (WRL-68). After validation, PK studies in rabbits showed that the PK properties of TQ were improved and indicated that the drug behaves linearly. The Tmax, Cmax, and elimination half-life of TQ were found to be 3.96 ± 0.19 hours, 4811.33 ± 55.52 ng/mL, and 4.4933 ± 0.015 hours, respectively, indicating that TQ is suitable for extravascular administration.Conclusion: NLCs could be a promising vehicle for the oral delivery of TQ and improve its gastroprotective properties.Keywords: lipid based nanoparticles, black seed oil, gastric ulce
Induction of apoptosis in cancer cells by NiZn ferrite nanoparticles through mitochondrial cytochrome C release
Mothanna Sadiq Al-Qubaisi,1 Abdullah Rasedee,1,2 Moayad Husein Flaifel,3 Sahrim Hj Ahmad,3 Samer Hussein-Al-Ali,1 Mohd Zobir Hussein,4 Zulkarnain Zainal,4 Fatah H Alhassan,4 Yun H Taufiq-Yap,4 Eltayeb EM Eid,5 Ismail Adam Arbab,1 Bandar A Al-Asbahi,3 Thomas J Webster,6,7 Mohamed Ezzat El Zowalaty1,8,9 1Institute of Bioscience, 2Faculty of Veterinary Medicine, Universiti Putra Malaysia, 3Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 4Faculty of Science, Universiti Putra Malaysia, Selangor, Malaysia; 5College of Pharmacy, Qassim University, Buraidah, Saudi Arabia; 6Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA, USA; 7Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 8Faculty of Pharmacy, Zagazig University, Zagazig, Egypt; 9Faculty of Public Health and Tropical Medicine, Jazan University, Jazan, Saudi Arabia Abstract: The long-term objective of the present study was to determine the ability of NiZn ferrite nanoparticles to kill cancer cells. NiZn ferrite nanoparticle suspensions were found to have an average hydrodynamic diameter, polydispersity index, and zeta potential of 254.2 ± 29.8 nm, 0.524 ± 0.013, and -60 ± 14 mV, respectively. We showed that NiZn ferrite nanoparticles had selective toxicity towards MCF-7, HepG2, and HT29 cells, with a lesser effect on normal MCF 10A cells. The quantity of Bcl-2, Bax, p53, and cytochrome C in the cell lines mentioned above was determined by colorimetric methods in order to clarify the mechanism of action of NiZn ferrite nanoparticles in the killing of cancer cells. Our results indicate that NiZn ferrite nanoparticles promote apoptosis in cancer cells via caspase-3 and caspase-9, downregulation of Bcl-2, and upregulation of Bax and p53, with cytochrome C translocation. There was a concomitant collapse of the mitochondrial membrane potential in these cancer cells when treated with NiZn ferrite nanoparticles. This study shows that NiZn ferrite nanoparticles induce glutathione depletion in cancer cells, which results in increased production of reactive oxygen species and eventually, death of cancer cells. Keywords: NiZn ferrite nanoparticles, cancer cells, reactive oxygen species, cytochrome C, mitochondrial membrane potential, p5