52 research outputs found

    Thermal stability of internal gettering of iron in silicon and its impact on optimization of gettering

    Get PDF
    The redissolution behavior of gettered iron was studied in p-type Czochralski-grown silicon with a doping level of 2.5×10exp14 cm−3 and an oxide precipitate density of 5×10exp9 cm−3. The concentrations of interstitial iron and iron–boron pairs were measured by deep level transient spectroscopy. It was found that the dependence of redissolved iron concentration on annealing time can be fitted by the function C(t)=C_0[1−exp(−t/tau_diss)], and the dissolution rate tau−1diss has an Arrhenius-type temperature dependence of tau−1diss=4.01×10exp4 × exp[−(1.47±0.10) eV/k_BT] s−1. Based on this empirical equation, we predict how stable the gettered iron is during different annealing sequences and discuss implications for optimization of internal gettering.Peer reviewe

    Doping-Assisted Defect Control In Compound Semiconductors

    Get PDF
    PatentThe present invention relates to the production of thin film epilayers of III-V and other compounds with acceptor doping wherein the acceptor thermally stabilizes the epilayer, stabilize the naturally incorporated native defect population and therewith maintain the epilayer's beneficial properties upon annealing among other advantageous effects. In particular, balanced doping in which the acceptor concentration is similar to (but does not exceed) the antisite defects in the as-grown material is shown to be particularly advantageous in providing thermal stability, high resistivity and ultrashort trapping times. In particular, MBE growth of LT-GaAs epilayers with balanced Be doping is described in detail. The growth conditions greatly enhance the materials reproducibility (that is, the yield in processed devices). Such growth techniques can be transferred to other III-V materials if the growth conditions are accurately reproduced. Materials produced herein also demonstrate advantages in reproducibility, reliability and radiation hardening

    SiC materials and devices

    No full text
    This volume addresses the subject of materials science, specifically the materials aspects, device applications, and fabricating technology of SiC

    Advances in photovoltaics

    No full text
    This volume is the third of a set of seven on the topic of photovoltaics. Solar cell-related technologies covered here include: ribbon silicon; heterojunction crystalline silicon; wafer equivalent crystalline silicon; and other advanced silicon solar cell structures and processes. Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the ""Willardson and Beer"" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant

    Identification of defects in semiconductors

    No full text
    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors.The"Willardson and Beer"Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices,Oxygen in Silicon, and others promise indeed that this tradition will be maintained and even expanded.Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry

    Electrical and Optical Properties of Carbon-Doped GaN Grown by MBE on MOCVD GaN Templates Using a CCl 4 Dopant Source Electrical and Optical Properties of Carbon-Doped GaN Grown by MBE on MOCVD GaN Templates Using a CCl 4 Dopant Source

    No full text
    ABSTRACT Carbon-doped GaN was grown by plasma-assisted molecular-beam epitaxy using carbon tetrachloride vapor as the dopant source. For moderate doping mainly acceptors were formed, yielding semi-insulating GaN. However at higher concentrations p-type conductivity was not observed, and heavily doped films (>5µ10 20 cm -3 ) were actually ntype rather than semi-insulating. Photoluminescence measurements showed two broad luminescence bands centered at 2.2 and 2.9 eV. The intensity of both bands increased with carbon content, but the 2.2 eV band dominated in n-type samples. Intense, narrow (~6 meV) donor-bound exciton peaks were observed in the semi-insulating samples

    Intersubband transitions in quantum wells physics and device applications

    No full text
    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The Willardson and Beer series, as it is widely known, has succeeded in producing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Pr

    Effect of disorder and defects in ion-implanted semiconductors: optical and photothermal characterization

    No full text
    Defects in ion-implanted semiconductors are important and will likely gain increased importance as annealing temperatures are reduced with successive IC generations. Novel implant approaches, such as MdV implantation, create new types of defects whose origin and annealing characteristics will need to be addressed. Publications in this field mainly focus on the effects of ion implantation on the material and the modification in the implanted layer after high temperature annealing. The editors of this volume and Volume 45 focus on the physics of the annealing kinetics of the damaged layer. An overview of characterization tehniques and a critical comparison of the information on annealing kinetics is also presented. Key Features * Provides basic knowledge of ion implantation-induced defects * Focuses on physical mechanisms of defect annealing * Utilizes electrical, physical, and optical characterization tools for processed semiconductors * Provides the basis for understanding the problems caused by the defects generated by implantation and the means for their characterization and elimination

    Germanium silicon: physics and materials

    No full text
    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition will be maintained and even expanded. Reflecting the truly interdisciplinary nature of the field that the series covers, the volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in modern industry
    • …
    corecore