99 research outputs found
Identification and Characterization of Peripheral T-Cell Lymphoma-Associated SEREX Antigens
Peripheral T-cell lymphomas (PTCL) are generally less common and pursue a more aggressive clinical course than B-cell lymphomas, with the T-cell phenotype itself being a poor prognostic factor in adult non-Hodgkin lymphoma (NHL). With notable exceptions such as ALK+ anaplastic large cell lymphoma (ALCL, ALK+), the molecular abnormalities in PTCL remain poorly characterised. We had previously identified circulating antibodies to ALK in patients with ALCL, ALK+. Thus, as a strategy to identify potential antigens associated with the pathogenesis of PTCL, not otherwise specified (PTCL, NOS), we screened a testis cDNA library with sera from four PTCL, NOS patients using the SEREX (serological analysis of recombinant cDNA expression libraries) technique. We identified nine PTCL, NOS-associated antigens whose immunological reactivity was further investigated using sera from 52 B- and T-cell lymphoma patients and 17 normal controls. The centrosomal protein CEP250 was specifically recognised by patients sera and showed increased protein expression in cell lines derived from T-cell versus B-cell malignancies. TCEB3, BECN1, and two previously uncharacterised proteins, c14orf93 and ZBTB44, were preferentially recognised by patients' sera. Transcripts for all nine genes were identified in 39 cancer cell lines and the five genes encoding preferentially lymphoma-recognised antigens were widely expressed in normal tissues and mononuclear cell subsets. In summary, this study identifies novel molecules that are immunologically recognised in vivo by patients with PTCL, NOS. Future studies are needed to determine whether these tumor antigens play a role in the pathogenesis of PTCL
Immunolocalization of the short neuropeptide F receptor in queen brains and ovaries of the red imported fire ant (Solenopsis invicta Buren)
<p>Abstract</p> <p>Background</p> <p>Insect neuropeptides are involved in diverse physiological functions and can be released as neurotransmitters or neuromodulators acting within the central nervous system, and as circulating neurohormones in insect hemolymph. The insect short neuropeptide F (sNPF) peptides, related to the vertebrate neuropeptide Y (NPY) peptides, have been implicated in the regulation of food intake and body size, and play a gonadotropic role in the ovaries of some insect species. Recently the sNPF peptides were localized in the brain of larval and adult <it>Drosophila</it>. However, the location of the sNPF receptor, a G protein-coupled receptor (GPCR), has not yet been investigated in brains of any adult insect. To elucidate the sites of action of the sNPF peptide(s), the sNPF receptor tissue expression and cellular localization were analyzed in queens of the red imported fire ant, <it>Solenopsis invicta </it>Buren (Hymenoptera), an invasive social insect.</p> <p>Results</p> <p>In the queen brains and subesophageal ganglion about 164 cells distributed in distinctive cell clusters (C1-C9 and C12) or as individual cells (C10, C11) were immuno-positive for the sNPF receptor. Most of these neurons are located in or near important sensory neuropils including the mushroom bodies, the antennal lobes, the central complex, and in different parts of the protocerebrum, as well as in the subesophageal ganglion. The localization of the sNPF receptor broadly links the receptor signaling pathway with circuits regulating learning and feeding behaviors. In ovaries from mated queens, the detection of sNPF receptor signal at the posterior end of oocytes in mid-oogenesis stage suggests that the sNPF signaling pathway may regulate processes at the oocyte pole.</p> <p>Conclusions</p> <p>The analysis of sNPF receptor immunolocalization shows that the sNPF signaling cascade may be involved in diverse functions, and the sNPF peptide(s) may act in the brain as neurotransmitter(s) or neuromodulator(s), and in the ovaries as neurohormone(s). To our knowledge, this is the first report of the cellular localization of a sNPF receptor on the brain and ovaries of adult insects.</p
Structural plasticity of an immunochemically identified set of honeybee olfactory interneurones
Using a monoclonal antibody (FB 45) raised by Dr. A. Hofbauer (Wurzburg) against Drosophila brain we investigated the development and plasticity of immunoreactive cells belonging to the median and lateral antennoglomerular tracts (AGTS) in the honeybee brain. In early stages of pupal development presumed AGT immunoreactivity was detected in the diffuse central neuropil of the antennal lobe as well as in the glomeruli, which differentiate at 40% pupal development. The lateral protocerebral lobe--one target area of the AGTs--is labelled throughout pupal life whereas labelling in the calyces is first restricted to the basal ring region. Although the lips of the calyces develop in middle-aged pupae, they do not show immunoreactivity until the last day of metamorphosis. Unilateral ablation performed on pupae of different stages resulted in size reduction of the antennal lobe and fusion of glomeruli. The number of labelled somata and glomeruli in the antennal lobe were reduced on the treated side. These effects were more prominent when ablation was performed in young pupae. No differences in staining intensity at the light microscopic level were found in the calyces. Therefore a pre-embedding immunohistological approach was developed to detect AGT profiles in the mushroom body at the electron microscopic level
Recommended from our members
769 Murine skin mast cells release histamine after stimulation with vanilloids In vitro
Cell fragmentation in mouse preimplantation embryos induced by ectopic activation of the polar body extrusion pathway
International audienceCell fragmentation is commonly observed in human preimplantation embryos and is associated with poor prognosis during assisted reproductive technology (ART) procedures. However, the mechanisms leading to cell fragmentation remain largely unknown. Here, light sheet microscopy imaging of mouse embryos reveals that inefficient chromosome separation due to spindle defects, caused by dysfunctional molecular motors Myo1c or dynein, leads to fragmentation during mitosis. Extended exposure of the cell cortex to chromosomes locally triggers actomyosin contractility and pinches off cell fragments. This process is reminiscent of meiosis, during which small GTPase-mediated signals from chromosomes coordinate polar body extrusion (PBE) by actomyosin contraction. By interfering with the signals driving PBE, we find that this meiotic signaling pathway remains active during cleavage stages and is both required and sufficient to trigger fragmentation. Together, we find that fragmentation happens in mitosis after ectopic activation of actomyosin contractility by signals emanating from DNA, similar to those observed during meiosis. Our study uncovers the mechanisms underlying fragmentation in preimplantation embryos and, more generally, offers insight into the regulation of mitosis during the maternal-zygotic transition
Ectopic activation of the polar body extrusion pathway triggers cell fragmentation in preimplantation embryos
Abstract Cell fragmentation occurs during physiological processes, such as apoptosis, migration, or germ cell development. Fragmentation is also commonly observed during preimplantation development of human embryos and is associated with poor implantation prognosis during Assisted Reproductive Technology (ART) procedures. Despite its biological and clinical relevance, the mechanisms leading to cell fragmentation are unclear. Light sheet microscopy imaging of mouse embryos reveals that compromised spindle anchoring, due to Myo1c knockout or dynein inhibition, leads to fragmentation. We further show that defective spindle anchoring brings DNA in close proximity to the cell cortex, which, in stark contrast to previous reports in mitotic cells, locally triggers actomyosin contractility and pinches off cell fragments. The activation of actomyosin contractility by DNA in preimplantation embryos is reminiscent of the signals mediated by small GTPases throughout polar body extrusion (PBE) during meiosis. By interfering with the signals driving PBE, we find that this meiotic signaling pathway remains active during cleavage stages and is both required and sufficient to trigger fragmentation. Together, we find that fragmentation happens in mitosis after ectopic activation of actomyosin contractility by signals emanating from DNA, similar to those observed during meiosis. Our study uncovers the mechanisms underlying fragmentation in preimplantation embryos and, more generally, offers insight into the regulation of mitosis during the maternal-zygotic transition
- …