221 research outputs found
Potential Immunocompetence of Proteolytic Fragments Produced by Proteasomes before Evolution of the Vertebrate Immune System
To generate peptides for presentation by major histocompatibility complex (MHC) class I molecules to T lymphocytes, the immune system of vertebrates has recruited the proteasomes, phylogenetically ancient multicatalytic high molecular weight endoproteases. We have previously shown that many of the proteolytic fragments generated by vertebrate proteasomes have structural features in common with peptides eluted from MHC class I molecules, suggesting that many MHC class I ligands are direct products of proteasomal proteolysis. Here, we report that the processing of polypeptides by proteasomes is conserved in evolution, not only among vertebrate species, but including invertebrate eukaryotes such as insects and yeast. Unexpectedly, we found that several high copy ligands of MHC class I molecules, in particular, self-ligands, are major products in digests of source polypeptides by invertebrate proteasomes. Moreover, many major dual cleavage peptides produced by invertebrate proteasomes have the length and the NH2 and COOH termini preferred by MHC class I. Thus, the ability of proteasomes to generate potentially immunocompetent peptides evolved well before the vertebrate immune system. We demonstrate with polypeptide substrates that interferon γ induction in vivo or addition of recombinant proteasome activator 28α in vitro alters proteasomal proteolysis in such a way that the generation of peptides with the structural features of MHC class I ligands is optimized. However, these changes are quantitative and do not confer qualitatively novel characteristics to proteasomal proteolysis. The data suggest that proteasomes may have influenced the evolution of MHC class I molecules
Critical analysis of derivative dispersion relations at high energies
We discuss some formal and fundamental aspects related with the replacement
of integral dispersion relations by derivative forms, and their practical uses
in high energy elastic hadron scattering, in particular and
scattering. Starting with integral relations with one subtraction and
considering parametrizations for the total cross sections belonging to the
class of entire functions in the logarithm of the energy, a series of results
is deduced and our main conclusions are the following: (1) except for the
subtraction constant, the derivative forms do not depend on any additional free
parameter; (2) the only approximation in going from integral to derivative
relations (at high energies) concerns to assume as zero the lower limit in the
integral form; (3) the previous approximation and the subtraction constant
affect the fit results at both low and high energies and therefore, the
subtraction constant can not be disregarded; (4) from a practical point of
view, for single-pole Pomeron and secondary reggeons parametrizations and
center-of-mass energies above 5 GeV, the derivative relations with the
subtraction constant as a free fit parameter are completely equivalent to the
integral forms with finite (non-zero) lower limit. A detailed review on the
conditions of validity and assumptions related with the replacement of integral
by derivative relations is also presented and discussed.Comment: Revised version, 30 pages, 16 eps-figures, elsart.cls (included), to
appear in Nucl Phys.
Dispersion relations for hadronic light-by-light scattering and the muon g
The largest uncertainties in the Standard Model calculation of the anomalous magnetic moment of the muon (g – 2)μ come from hadronic effects, and in a few years the subleading hadronic light-by-light (HLbL) contribution might dominate the theory error. We present a dispersive description of the HLbL tensor, which is based on unitarity, analyticity, crossing symmetry, and gauge invariance. This opens up the possibility of a data-driven determination of the HLbL contribution to (g – 2)μ with the aim of reducing model dependence and achieving a reliable error estimate.
Our dispersive approach defines unambiguously the pion-pole and the pion-box contribution to the HLbL tensor. Using Mandelstam double-spectral representation, we have proven that the pion-box contribution coincides exactly with the one-loop scalar-QED amplitude, multiplied by the appropriate pion vector form factors. Using dispersive fits to high-statistics data for the pion vector form factor, we obtain αμπ-box=−15.92×10−11. A first model-independent calculation of effects of ππ intermediate states that go beyond the scalar-QED pion loop is also presented. We combine our dispersive description of the HLbL tensor with a partial-wave expansion and demonstrate that the known scalar-QED result is recovered after partial-wave resummation. After constructing suitable input for the γ*γ* → ππ helicity partial waves based on a pion-pole left-hand cut (LHC), we find that for the dominant charged-pion contribution this representation is consistent with the two-loop chiral prediction and the COMPASS measurement for the pion polarizability. This allows us to reliably estimate S-wave rescattering effects to the full pion box and leads to αμπ-box+αμ,J=0ππ,π-pole LHC=−241×10−11
Detection of enterovirus RNA in peripheral blood mononuclear cells correlates with the presence of the predisposing allele of the type 1 diabetes risk gene IFIH1 and with disease stage
Aims/hypothesis Enteroviral infection has been implicated consistently as a key environmental factor correlating with the appearance of autoimmunity and/or the presence of overt type 1 diabetes, in which pancreatic insulin-producing beta cells are destroyed by an autoimmune response. Genetic predisposition through variation in the type 1 diabetes risk gene IFIH1 (interferon induced with helicase C domain 1), which encodes the viral pattern-recognition receptor melanoma differentiation-associated protein 5 (MDA5), supports a potential link between enterovirus infection and type 1 diabetes. Methods We used molecular techniques to detect enterovirus RNA in peripheral blood samples (in separated cellular compartments or plasma) from two cohorts comprising 79 children or 72 adults that include individuals with and without type 1 diabetes who had multiple autoantibodies. We also used immunohistochemistry to detect the enteroviral protein VP1 in the pancreatic islets of post-mortem donors (n=43) with type 1 diabetes. Results We observed enhanced detection sensitivity when sampling the cellular compartment compared with the non-cellular compartment of peripheral blood (OR 21.69; 95% CI 3.64, 229.20; p Conclusions/interpretation Our data indicate that, in peripheral blood, antigen-presenting cells are the predominant source of enterovirus infection, and that infection is correlated with disease stage and genetic predisposition, thereby supporting a role for enterovirus infection prior to disease onset.Peer reviewe
Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data
We report a quasi-differential upper limit on the extremely-high-energy (EHE)
neutrino flux above GeV based on an analysis of nine years of
IceCube data. The astrophysical neutrino flux measured by IceCube extends to
PeV energies, and it is a background flux when searching for an independent
signal flux at higher energies, such as the cosmogenic neutrino signal. We have
developed a new method to place robust limits on the EHE neutrino flux in the
presence of an astrophysical background, whose spectrum has yet to be
understood with high precision at PeV energies. A distinct event with a
deposited energy above GeV was found in the new two-year sample, in
addition to the one event previously found in the seven-year EHE neutrino
search. These two events represent a neutrino flux that is incompatible with
predictions for a cosmogenic neutrino flux and are considered to be an
astrophysical background in the current study. The obtained limit is the most
stringent to date in the energy range between and GeV. This result constrains neutrino models predicting a three-flavor
neutrino flux of $E_\nu^2\phi_{\nu_e+\nu_\mu+\nu_\tau}\simeq2\times 10^{-8}\
{\rm GeV}/{\rm cm}^2\ \sec\ {\rm sr}10^9\ {\rm GeV}$. A significant part
of the parameter-space for EHE neutrino production scenarios assuming a
proton-dominated composition of ultra-high-energy cosmic rays is excluded.Comment: The version accepted for publication in Physical Review
Research in Monumental Constructions in Antiquity
Ancient civilizations have passed down to us a vast range of monumental
structures. Monumentality is a complex phenomenon that we address here as
‘XXL’. It encompasses a large range of different aspects, such as
sophisticated technical and logistical skills and the vast economic resources
required. This contribution takes a closer look at the special interdependence
of space and knowledge represented by such XXL projects. We develop a set of
objective criteria for determining whether an object qualifies as ‘XXL’, in
order to permit a broadly framed study comparing manifestations of the XXL
phenomenon in different cultures and describing the functional and
conceptional role of the phenomenon in antiquity. Finally, we illustrate how
these criteria are being applied in the study of large construction projects
in ancient civilizations through six case studies
Detection of enterovirus RNA in peripheral blood mononuclear cells correlates with the presence of the predisposing allele of the type 1 diabetes risk gene IFIH1 and with disease stage
Aims/hypothesis Enteroviral infection has been implicated consistently as a key environmental factor correlating with the appearance of autoimmunity and/or the presence of overt type 1 diabetes, in which pancreatic insulin-producing beta cells are destroyed by an autoimmune response. Genetic predisposition through variation in the type 1 diabetes risk gene IFIH1 (interferon induced with helicase C domain 1), which encodes the viral pattern-recognition receptor melanoma differentiation-associated protein 5 (MDA5), supports a potential link between enterovirus infection and type 1 diabetes.Methods We used molecular techniques to detect enterovirus RNA in peripheral blood samples (in separated cellular compartments or plasma) from two cohorts comprising 79 children or 72 adults that include individuals with and without type 1 diabetes who had multiple autoantibodies. We also used immunohistochemistry to detect the enteroviral protein VP1 in the pancreatic islets of post-mortem donors (n=43) with type 1 diabetes.Results We observed enhanced detection sensitivity when sampling the cellular compartment compared with the non-cellular compartment of peripheral blood (OR 21.69; 95% CI 3.64, 229.20; p</p
Biomarker analysis of cetuximab plus oxaliplatin/leucovorin/5-fluorouracil in first-line metastatic gastric and oesophago-gastric junction cancer: results from a phase II trial of the Arbeitsgemeinschaft Internistische Onkologie (AIO)
<p>Abstract</p> <p>Background</p> <p>The activity of the epidermal growth factor receptor (EGFR)-directed monoclonal antibody cetuximab combined with oxaliplatin/leucovorin/5-fluorouracil (FUFOX) was assessed in first-line metastatic gastric and oesophago-gastric junction (OGJ) cancer in a prospective phase II study showing a promising objective tumour response rate of 65% and a low mutation frequency of <it>KRAS </it>(3%). The aim of the correlative tumour tissue studies was to investigate the relationship between <it>EGFR </it>gene copy numbers, activation of the EGFR pathway, expression and mutation of E-cadherin, V600E BRAF mutation and clinical outcome of patients with gastric and OGJ cancer treated with cetuximab combined with FUFOX.</p> <p>Methods</p> <p>Patients included in this correlative study (<it>n </it>= 39) were a subset of patients from the clinical phase II study. The association between <it>EGFR </it>gene copy number, activation of the EGFR pathway, abundance and mutation of E-cadherin which plays an important role in these disorders, BRAF mutation and clinical outcome of patients was studied. <it>EGFR </it>gene copy number was assessed by FISH. Expression of the phosphorylated forms of EGFR and its downstream effectors Akt and MAPK, in addition to E-cadherin was analysed by immunohistochemistry. The frequency of mutant V600E BRAF was evaluated by allele-specific PCR and the mutation profile of the E-cadherin gene <it>CDH1 </it>was examined by DHPLC followed by direct sequence analysis. Correlations with overall survival (OS), time to progression (TTP) and overall response rate (ORR) were assessed.</p> <p>Results</p> <p>Our study showed a significant association between increased <it>EGFR </it>gene copy number (≥ 4.0) and OS in gastric and OGJ cancer, indicating the possibility that patients may be selected for treatment on a genetic basis. Furthermore, a significant correlation was shown between activated EGFR and shorter TTP and ORR, but not between activated EGFR and OS. No V600E BRAF mutations were identified. On the other hand, an interesting trend between high E-cadherin expression levels and better OS was observed and two <it>CDH1 </it>exon 9 missense mutations (A408V and D402H) were detected.</p> <p>Conclusion</p> <p>Our finding that increased <it>EGFR </it>gene copy numbers, activated EGFR and the E-cadherin status are potentially interesting biomarkers needs to be confirmed in larger randomized clinical trials.</p> <p>Trial registration</p> <p>Multicentre clinical study with the European Clinical Trials Database number 2004-004024-12.</p
- …