3,377 research outputs found
A model for the UHE gamma-rays from Hercules X-1
An outburst of gamma rays with energies E gamma 10 to the 12th power eV was recently detected from the X-ray pulsar Hercules X-1. The outburst had a 3 minute duration and occurred at a time during the 35 day X-ray modulation that is associated with X-ray turnon. The gamma rays also have the same 1.24 second modulation that is observed at X-ray energies. Subsequently a 40 minute outburst was detected at E gamma 10 to the 14th power eV. The interaction of ultrahigh energy particles with a precessing accretion disk explain the observed gamma ray light curve. The constraints one can place on acceleration mechanisms and the possibility that the UHE particles are accelerated by shocks in an accretion flow are explained
Probing the Production of Actinides under Different r-process Conditions
Several extremely metal-poor stars are known to have an enhanced thorium abundance. These actinide-boost stars have likely inherited material from an r-process that operated under different conditions than the r-process that is reflected in most other metal-poor stars with no actinide enhancement. In this article, we explore the sensitivity of actinide production in r-process calculations to the hydrodynamical conditions as well as the nuclear physics. We find that the initial electron fraction Y e is the most important factor determining the actinide yields and that the abundance ratios between long-lived actinides and lanthanides like europium can vary for different conditions in our calculations. In our setup, conditions with high entropies systematically lead to lower actinide abundances relative to other r-process elements. Furthermore, actinide-enhanced ejecta can also be distinguished from the "regular" composition in other ways, most notably in the second r-process peak abundances.Peer reviewe
Nuclear-resonant electron scattering
We investigate nuclear-resonant electron scattering as occurring in the
two-step process of nuclear excitation by electron capture (NEEC) followed by
internal conversion. The nuclear excitation and decay are treated by a
phenomenological collective model in which nuclear states and transition
probabilities are described by experimental parameters. We present capture
rates and resonant strengths for a number of heavy ion collision systems
considering various scenarios for the resonant electron scattering process. The
results show that for certain cases resonant electron scattering can have
significantly larger resonance strengths than NEEC followed by the radiative
decay of the nucleus. We discuss the impact of our findings on the possible
experimental observation of NEEC.Comment: 24 pages, 2 plots, 5 table
Complete and safe resection of challenging retroperitoneal tumors: anticipation of multi-organ and major vascular resection and use of adjunct procedures.
BackgroundRetroperitoneal tumors are often massive and can involve adjacent organs and/or vital structures, making them difficult to resect. Completeness of resection is within the surgeon's control and critical for long-term survival, particularly for malignant disease. Few studies directly address strategies for complete and safe resection of challenging retroperitoneal tumors.MethodsFifty-six patients representing 63 cases of primary or recurrent retroperitoneal tumor resection between 2004-2009 were identified and a retrospective chart review was performed. Rates of complete resection, use of adjunct procedures, and perioperative complications were recorded.ResultsIn 95% of cases, complete resection was achieved. Fifty-eight percent of these cases required en bloc multi-organ resection, and 8% required major vascular resection. Complete resection rates were higher for primary versus recurrent disease. Adjunct procedures (ureteral stents, femoral nerve monitoring, posterior laminotomy, etc.) were used in 54% of cases. Major postoperative complications occurred in 16% of cases, and one patient died (2% mortality).ConclusionsComplete resection of challenging retroperitoneal tumors is feasible and can be done safely with important pre- and intraoperative considerations in mind
Asymptotic channels and gauge transformations of the time-dependent Dirac equation for extremely relativistic heavy-ion collisions
We discuss the two-center, time-dependent Dirac equation describing the
dynamics of an electron during a peripheral, relativistic heavy-ion collision
at extreme energies. We derive a factored form, which is exact in the
high-energy limit, for the asymptotic channel solutions of the Dirac equation,
and elucidate their close connection with gauge transformations which transform
the dynamics into a representation in which the interaction between the
electron and a distant ion is of short range. We describe the implications of
this relationship for solving the time-dependent Dirac equation for extremely
relativistic collisions.Comment: 12 pages, RevTeX, 2 figures, submitted to PR
War Drums: A Retrospective Analysis of Post 9/11 Media and the Mis-education of the American Public
This empirical research contributes to the critical analysis of media as a source of information and misinformation for adults; paying specific attention to the institutional nexus of political communication serving as a tool of the structural elite in bolstering an agenda contingent upon a mis-educated populous. The theoretical framework resides within the critical theory of media utilizing the propaganda model as a perspective analysis of the structural components of political communication. It adds to the continued critical analysis of media by scholars who assert that consumers of media are indeed bound to the ideological discourse as participants, and that to some degree they have the agency to realize the source of the dominant ideology; however, if they are media literate or obtain proper education they will possess or will develop within themselves the ability to reject the current messages maintaining the ideological status quo
Influence of body water distribution on skin thickness: measurements using high-frequency ultrasound
Theory of nuclear excitation by electron capture for heavy ions
We investigate the resonant process of nuclear excitation by electron
capture, in which a continuum electron is captured into a bound state of an ion
with the simultaneous excitation of the nucleus. In order to derive the cross
section a Feshbach projection operator formalism is introduced. Nuclear states
and transitions are described by a nuclear collective model and making use of
experimental data. Transition rates and total cross sections for NEEC followed
by the radiative decay of the excited nucleus are calculated for various heavy
ion collision systems
- …