1,803 research outputs found

    Non-linear transmission lines for pulse shaping in silicon

    Get PDF
    Non-linear transmission limes (NLTL) are used for pulse shaping. We developed the theory of pulse propagation through the NLTL. The problem of a wide pulse degenerating into multiple pulses rather than a single pulse is solved by using a novel gradually scaled NLTL. We exploit certain favorable properties of accumulation mode MOS varactors to design an NLTL that can sharpen both rising and falling edges, simultaneously. There is a good agreement among the theory, simulations, and measurements

    Nonlinear transmission lines for pulse shaping in silicon

    Get PDF
    Nonlinear transmission lines (NLTL) are used for pulse shaping. We developed the theory of pulse propagation through the NLTL. The problem of a wide pulse degenerating into multiple pulses rather than a single pulse is solved by using a gradually scaled NLTL. We exploit certain favorable properties of accumulation-mode MOS varactors to design an NLTL that can simultaneously sharpen both rising and falling edges. There is a good agreement among the theory, simulations, and measurements

    Ultrafast Analog Fourier Transform Using 2-D LC Lattice

    Get PDF
    We describe how a 2-D rectangular lattice of inductors and capacitors can serve as an analog Fourier transform device, generating an approximate discrete Fourier transform (DFT) of an arbitrary input vector of fixed length. The lattice displays diffractive and refractive effects and mimics the combined optical effects of a thin-slit aperture and lens. Diffraction theories in optics are usually derived for 3-D media, whereas our derivations proceed in 2-D. Analytical and numerical results show agreement between lattice output and the true DFT. Potentially, this lattice can be used for an extremely low latency and high throughput analog signal processing device. The lattice can be fabricated on-chip with frequency of operation of more than 10 GHz
    • 

    corecore