1,617 research outputs found

    Potts Model On Random Trees

    Full text link
    We study the Potts model on locally tree-like random graphs of arbitrary degree distribution. Using a population dynamics algorithm we numerically solve the problem exactly. We confirm our results with simulations. Comparisons with a previous approach are made, showing where its assumption of uniform local fields breaks down for networks with nodes of low degree.Comment: 10 pages, 3 figure

    BKT-like transition in the Potts model on an inhomogeneous annealed network

    Full text link
    We solve the ferromagnetic q-state Potts model on an inhomogeneous annealed network which mimics a random recursive graph. We find that this system has the inverted Berezinskii--Kosterlitz--Thouless (BKT) phase transition for any q1q \geq 1, including the values q3q \geq 3, where the Potts model normally shows a first order phase transition. We obtain the temperature dependences of the order parameter, specific heat, and susceptibility demonstrating features typical for the BKT transition. We show that in the entire normal phase, both the distribution of a linear response to an applied local field and the distribution of spin-spin correlations have a critical, i.e. power-law, form.Comment: 7 pages, 3 figure

    Phenomenological Models of Socio-Economic Network Dynamics

    Full text link
    We study a general set of models of social network evolution and dynamics. The models consist of both a dynamics on the network and evolution of the network. Links are formed preferentially between 'similar' nodes, where the similarity is defined by the particular process taking place on the network. The interplay between the two processes produces phase transitions and hysteresis, as seen using numerical simulations for three specific processes. We obtain analytic results using mean field approximations, and for a particular case we derive an exact solution for the network. In common with real-world social networks, we find coexistence of high and low connectivity phases and history dependence.Comment: 11 pages, 8 figure

    Series Expansion Calculation of Persistence Exponents

    Full text link
    We consider an arbitrary Gaussian Stationary Process X(T) with known correlator C(T), sampled at discrete times T_n = n \Delta T. The probability that (n+1) consecutive values of X have the same sign decays as P_n \sim \exp(-\theta_D T_n). We calculate the discrete persistence exponent \theta_D as a series expansion in the correlator C(\Delta T) up to 14th order, and extrapolate to \Delta T = 0 using constrained Pad\'e approximants to obtain the continuum persistence exponent \theta. For the diffusion equation our results are in exceptionally good agreement with recent numerical estimates.Comment: 5 pages; 5 page appendix containing series coefficient

    Asymptotics of Toeplitz Determinants and the Emptiness Formation Probability for the XY Spin Chain

    Full text link
    We study an asymptotic behavior of a special correlator known as the Emptiness Formation Probability (EFP) for the one-dimensional anisotropic XY spin-1/2 chain in a transverse magnetic field. This correlator is essentially the probability of formation of a ferromagnetic string of length nn in the antiferromagnetic ground state of the chain and plays an important role in the theory of integrable models. For the XY Spin Chain, the correlator can be expressed as the determinant of a Toeplitz matrix and its asymptotical behaviors for nn \to \infty throughout the phase diagram are obtained using known theorems and conjectures on Toeplitz determinants. We find that the decay is exponential everywhere in the phase diagram of the XY model except on the critical lines, i.e. where the spectrum is gapless. In these cases, a power-law prefactor with a universal exponent arises in addition to an exponential or Gaussian decay. The latter Gaussian behavior holds on the critical line corresponding to the isotropic XY model, while at the critical value of the magnetic field the EFP decays exponentially. At small anisotropy one has a crossover from the Gaussian to the exponential behavior. We study this crossover using the bosonization approach.Comment: 40 pages, 9 figures, 1 table. The poor quality of some figures is due to arxiv space limitations. If You would like to see the pdf with good quality figures, please contact Fabio Franchini at "[email protected]

    Correlations in interacting systems with a network topology

    Full text link
    We study pair correlations in cooperative systems placed on complex networks. We show that usually in these systems, the correlations between two interacting objects (e.g., spins), separated by a distance \ell, decay, on average, faster than 1/(z)1/(\ell z_\ell). Here zz_\ell is the mean number of the \ell-th nearest neighbors of a vertex in a network. This behavior, in particular, leads to a dramatic weakening of correlations between second and more distant neighbors on networks with fat-tailed degree distributions, which have a divergent number z2z_2 in the infinite network limit. In this case, only the pair correlations between the nearest neighbors are observable. We obtain the pair correlation function of the Ising model on a complex network and also derive our results in the framework of a phenomenological approach.Comment: 5 page

    Survival in equilibrium step fluctuations

    Full text link
    We report the results of analytic and numerical investigations of the time scale of survival or non-zero-crossing probability S(t)S(t) in equilibrium step fluctuations described by Langevin equations appropriate for attachment/detachment and edge-diffusion limited kinetics. An exact relation between long-time behaviors of the survival probability and the autocorrelation function is established and numerically verified. S(t)S(t) is shown to exhibit simple scaling behavior as a function of system size and sampling time. Our theoretical results are in agreement with those obtained from an analysis of experimental dynamical STM data on step fluctuations on Al/Si(111) and Ag(111) surfaces.Comment: RevTeX, 4 pages, 3 figure

    Influência da cultivar de tomateiro na ação de indutores de resistência sobre adultos de Bemisia tabaci biótipo B.

    Get PDF
    Este trabalho teve por objetivo determinar se o uso associado de cultivar e indutor de resistência a fitopatógenos pode ocasionar alta mortalidade de mosca branca.Resumo 153

    Integrating HDAd5/35++ vectors as a new platform for HSC gene therapy of hemoglobinopathies

    Get PDF
    We generated an integrating, CD46-targeted, helper-dependent adenovirus HDAd5/35++ vector system for hematopoietic stem cell (HSC) gene therapy. The ∼12-kb transgene cassette included a β-globin locus control region (LCR)/promoter driven human γ-globin gene and an elongation factor alpha-1 (EF1α)-mgmtP140K expression cassette, which allows for drug-controlled increase of γ-globin-expressing erythrocytes. We transduced bone marrow lineage-depleted cells from human CD46-transgenic mice and transplanted them into lethally irradiated recipients. The percentage of γ-globin-positive cells in peripheral blood erythrocytes in primary and secondary transplant recipients was stable and greater than 90%. The γ-globin level was 10%–20% of adult mouse globin. Transgene integration, mediated by a hyperactive Sleeping Beauty SB100x transposase, was random, without a preference for genes. A second set of studies was performed with peripheral blood CD34+ cells from mobilized donors. 10 weeks after transplantation of transduced cells, human cells were harvested from the bone marrow and differentiated ex vivo into erythroid cells. Erythroid cells expressed γ-globin at a level of 20% of adult α-globin. Our studies suggest that HDAd35++ vectors allow for efficient transduction of long-term repopulating HSCs and high-level, almost pancellular γ-globin expression in erythrocytes. Furthermore, our HDAd5/35++ vectors have a larger insert capacity and a safer integration pattern than currently used lentivirus vectors
    corecore