2 research outputs found

    Antiferromagnetic metal phase in an electron-doped rare-earth nickelate

    Full text link
    Long viewed as passive elements, antiferromagnetic materials have emerged as promising candidates for spintronic devices due to their insensitivity to external fields and potential for high-speed switching. Recent work exploiting spin and orbital effects has identified ways to electrically control and probe the spins in metallic antiferromagnets, especially in noncollinear or noncentrosymmetric spin structures. The rare earth nickelate NdNiO3 is known to be a noncollinear antiferromagnet where the onset of antiferromagnetic ordering is concomitant with a transition to an insulating state. Here, we find that for low electron doping, the magnetic order on the nickel site is preserved while electronically a new metallic phase is induced. We show that this metallic phase has a Fermi surface that is mostly gapped by an electronic reconstruction driven by the bond disproportionation. Furthermore, we demonstrate the ability to write to and read from the spin structure via a large zero-field planar Hall effect. Our results expand the already rich phase diagram of the rare-earth nickelates and may enable spintronics applications in this family of correlated oxides.Comment: 25 pages, 4 figure

    Half and quarter metals in rhombohedral trilayer graphene

    No full text
    Ferromagnetism is most common in transition metal compounds but may also arise in low-density two-dimensional electron systems, with signatures observed in silicon, III-V semiconductor systems, and graphene moiré heterostructures. Here we show that gate-tuned van Hove singularities in rhombohedral trilayer graphene drive the spontaneous ferromagnetic polarization of the electron system into one or more spin- and valley flavors. Using capacitance measurements on graphite-gated van der Waals heterostructures, we find a cascade of density- and electronic displacement field tuned phase transitions marked by negative electronic compressibility. The transitions define the boundaries between phases where quantum oscillations have either four-fold, two-fold, or one-fold degeneracy, associated with a spin and valley degenerate normal metal, spin-polarized `half-metal', and spin and valley polarized `quarter metal', respectively. For electron doping, the salient features are well captured by a phenomenological Stoner model with a valley-anisotropic Hund's coupling, likely arising from interactions at the lattice scale. For hole filling, we observe a richer phase diagram featuring a delicate interplay of broken symmetries and transitions in the Fermi surface topology. Finally, by rotational alignment of a hexagonal boron nitride substrate to induce a moiré superlattice, we find that the superlattice perturbs the preexisting isospin order only weakly, leaving the basic phase diagram intact while catalyzing the formation of topologically nontrivial gapped states whenever itinerant half- or quarter metal states occur at half- or quarter superlattice band filling. Our results show that rhombohedral trilayer graphene is an ideal platform for well-controlled tests of many-body theory and reveal magnetism in moiré materials to be fundamentally itinerant in nature
    corecore