22 research outputs found

    Bostonia: v. 63, no. 3

    Full text link
    Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF

    Risk of Epidural Hematoma after Neuraxial Techniques in Thrombocytopenic Parturients : A Report from the Multicenter Perioperative Outcomes Group

    No full text
    BACKGROUND:: Thrombocytopenia has been considered a relative or even absolute contraindication to neuraxial techniques due to the risk of epidural hematoma. There is limited literature to estimate the risk of epidural hematoma in thrombocytopenic parturients. The authors reviewed a large perioperative database and performed a systematic review to further define the risk of epidural hematoma requiring surgical decompression in this population. METHODS:: The authors performed a retrospective cohort study using the Multicenter Perioperative Outcomes Group database to identify thrombocytopenic parturients who received a neuraxial technique and to estimate the risk of epidural hematoma. Patients were stratified by platelet count, and those requiring surgical decompression were identified. A systematic review was performed, and risk estimates were combined with those from the existing literature. RESULTS:: A total of 573 parturients with a platelet count less than 100,000 mm who received a neuraxial technique across 14 institutions were identified in the Multicenter Perioperative Outcomes Group database, and a total of 1,524 parturients were identified after combining the data from the systematic review. No cases of epidural hematoma requiring surgical decompression were observed. The upper bound of the 95% CI for the risk of epidural hematoma for a platelet count of 0 to 49,000 mm is 11%, for 50,000 to 69,000 mm is 3%, and for 70,000 to 100,000 mm is 0.2%. CONCLUSIONS:: The number of thrombocytopenic parturients in the literature who received neuraxial techniques without complication has been significantly increased. The risk of epidural hematoma associated with neuraxial techniques in parturients at a platelet count less than 70,000 mm remains poorly defined due to limited observations

    Risk of Epidural Hematoma after Neuraxial Techniques in Thrombocytopenic Parturients : A Report from the Multicenter Perioperative Outcomes Group

    No full text
    BACKGROUND:: Thrombocytopenia has been considered a relative or even absolute contraindication to neuraxial techniques due to the risk of epidural hematoma. There is limited literature to estimate the risk of epidural hematoma in thrombocytopenic parturients. The authors reviewed a large perioperative database and performed a systematic review to further define the risk of epidural hematoma requiring surgical decompression in this population. METHODS:: The authors performed a retrospective cohort study using the Multicenter Perioperative Outcomes Group database to identify thrombocytopenic parturients who received a neuraxial technique and to estimate the risk of epidural hematoma. Patients were stratified by platelet count, and those requiring surgical decompression were identified. A systematic review was performed, and risk estimates were combined with those from the existing literature. RESULTS:: A total of 573 parturients with a platelet count less than 100,000 mm who received a neuraxial technique across 14 institutions were identified in the Multicenter Perioperative Outcomes Group database, and a total of 1,524 parturients were identified after combining the data from the systematic review. No cases of epidural hematoma requiring surgical decompression were observed. The upper bound of the 95% CI for the risk of epidural hematoma for a platelet count of 0 to 49,000 mm is 11%, for 50,000 to 69,000 mm is 3%, and for 70,000 to 100,000 mm is 0.2%. CONCLUSIONS:: The number of thrombocytopenic parturients in the literature who received neuraxial techniques without complication has been significantly increased. The risk of epidural hematoma associated with neuraxial techniques in parturients at a platelet count less than 70,000 mm remains poorly defined due to limited observations

    ILC Reference Design Report Volume 1 - Executive Summary

    No full text
    The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization.The International Linear Collider (ILC) is a 200-500 GeV center-of-mass high-luminosity linear electron-positron collider, based on 1.3 GHz superconducting radio-frequency (SCRF) accelerating cavities. The ILC has a total footprint of about 31 km and is designed for a peak luminosity of 2x10^34 cm^-2s^-1. This report is the Executive Summary (Volume I) of the four volume Reference Design Report. It gives an overview of the physics at the ILC, the accelerator design and value estimate, the detector concepts, and the next steps towards project realization

    International Linear Collider Reference Design Report Volume 2: PHYSICS AT THE ILC

    No full text
    This article reviews the physics case for the ILC. Baseline running at 500 GeV as well as possible upgrades and options are discussed. The opportunities on Standard Model physics, Higgs physics, Supersymmetry and alternative theories beyond the Standard Model are described.This article reviews the physics case for the ILC. Baseline running at 500 GeV as well as possible upgrades and options are discussed. The opportunities on Standard Model physics, Higgs physics, Supersymmetry and alternative theories beyond the Standard Model are described
    corecore