14 research outputs found

    Patient and Public involvement in research From tokenistic box ticking to valued team members

    Get PDF
    This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.Background Patient and public involvement (PPI) in research envisages a relationship built throughout the lifespan of a research project between academics, clinicians and PPI colleagues in order to inform, plan, execute and, in due course, disseminate and translate research. To be meaningful, all stakeholders need to actively engage in this exchange of expertise. However, despite some funders requiring PPI plans to be included in grant applications, there remains a gap between what is expected and what is delivered. Main body As an exemplar, we reflect on how, in the Asthma UK Centre for Applied Research (AUKCAR), we set out to create a supportive, organised environment with the overarching value of ‘keeping patients at the heart of everything we do’. The key has been in planning and creating a suitably funded organisational infrastructure with dedicated PPI researchers along with the development of and expectation to abide by an agreed set of norms and values. Specifically, expecting AUKCAR PhD students and early career researchers to engage with PPI has established a working mode that we hope will last. Regular interactions and proactive Patient Leads increase PPI network cohesion. Conclusion With adaptation, the AUKCAR PPI model can be translated to international contexts.TJ is the Patient and Public Involvement research fellow for the Asthma UK Centre for Applied Research and the NIHR Global Health Research Unit on Respiratory Health (RESPIRE). TJ is part funded by Asthma UK as part of the Asthma UK Centre for Applied Research (AUK-AC-2018-01). RESPIRE is funded by the National Institute for Health Research (NIHR) (16/136/109) using UK aid from the UK Government to support global health researc

    Efficacy and safety of metabolic interventions for the treatment of severe COVID-19: in vitro, observational, and non-randomized open-label interventional study

    Get PDF
    Background: Viral infection is associated with a significant rewire of the host metabolic pathways, presenting attractive metabolic targets for intervention. Methods: We chart the metabolic response of lung epithelial cells to SARS-CoV-2 infection in primary cultures and COVID-19 patient samples and perform in vitro metabolism-focused drug screen on primary lung epithelial cells infected with different strains of the virus. We perform observational analysis of Israeli patients hospitalized due to COVID-19 and comparative epidemiological analysis from cohorts in Italy and the Veteran's Health Administration in the United States. In addition, we perform a prospective non-randomized interventional open-label study in which 15 patients hospitalized with severe COVID-19 were given 145 mg/day of nanocrystallized fenofibrate added to the standard of care. Results: SARS-CoV-2 infection produced transcriptional changes associated with increased glycolysis and lipid accumulation. Metabolism-focused drug screen showed that fenofibrate reversed lipid accumulation and blocked SARS-CoV-2 replication through a PPARα-dependent mechanism in both alpha and delta variants. Analysis of 3233 Israeli patients hospitalized due to COVID-19 supported in vitro findings. Patients taking fibrates showed significantly lower markers of immunoinflammation and faster recovery. Additional corroboration was received by comparative epidemiological analysis from cohorts in Europe and the United States. A subsequent prospective non-randomized interventional open-label study was carried out on 15 patients hospitalized with severe COVID-19. The patients were treated with 145 mg/day of nanocrystallized fenofibrate in addition to standard-of-care. Patients receiving fenofibrate demonstrated a rapid reduction in inflammation and a significantly faster recovery compared to patients admitted during the same period. Conclusions: Taken together, our data suggest that pharmacological modulation of PPARα should be strongly considered as a potential therapeutic approach for SARS-CoV-2 infection and emphasizes the need to complete the study of fenofibrate in large randomized controlled clinical trials. Funding: Funding was provided by European Research Council Consolidator Grants OCLD (project no. 681870) and generous gifts from the Nikoh Foundation and the Sam and Rina Frankel Foundation (YN). The interventional study was supported by Abbott (project FENOC0003). Clinical trial number: NCT04661930
    corecore