7 research outputs found

    Postnatal Cytomegalovirus Exposure in Infants of Antiretroviral-Treated and Untreated HIV-Infected Mothers

    Get PDF
    HIV-1 and CMV are important pathogens transmitted via breastfeeding. Furthermore, perinatal CMV transmission may impact growth and disease progression in HIV-exposed infants. Although maternal antiretroviral therapy reduces milk HIV-1 RNA load and postnatal transmission, its impact on milk CMV load is unclear. We examined the relationship between milk CMV and HIV-1 load (4-6 weeks postpartum) and the impact of antiretroviral treatment in 69 HIV-infected, lactating Malawian women and assessed the relationship between milk CMV load and postnatal growth in HIV-exposed, breastfed infants through six months of age. Despite an association between milk HIV-1 RNA and CMV DNA load (0.39 log 10 rise CMV load per log 10 rise HIV-1 RNA load, 95% CI 0.13-0.66), milk CMV load was similar in antiretroviral-treated and untreated women. Higher milk CMV load was associated with lower length-for-age (−0.53, 95% CI: −0.96, −0.10) and weight-for-age (−0.40, 95% CI: −0.67, −0.13) Zscore at six months in exposed, uninfected infants. As the impact of maternal antiretroviral therapy on the magnitude of postnatal CMV exposure may be limited, our findings of an inverse relationship between infant growth and milk CMV load highlight the importance of defining the role of perinatal CMV exposure on growth faltering of HIV-exposed infants

    Postnatal Cytomegalovirus Exposure in Infants of Antiretroviral-Treated and Untreated HIV-Infected Mothers

    No full text
    HIV-1 and CMV are important pathogens transmitted via breastfeeding. Furthermore, perinatal CMV transmission may impact growth and disease progression in HIV-exposed infants. Although maternal antiretroviral therapy reduces milk HIV-1 RNA load and postnatal transmission, its impact on milk CMV load is unclear. We examined the relationship between milk CMV and HIV-1 load (4–6 weeks postpartum) and the impact of antiretroviral treatment in 69 HIV-infected, lactating Malawian women and assessed the relationship between milk CMV load and postnatal growth in HIV-exposed, breastfed infants through six months of age. Despite an association between milk HIV-1 RNA and CMV DNA load (0.39 log10 rise CMV load per log10 rise HIV-1 RNA load, 95% CI 0.13–0.66), milk CMV load was similar in antiretroviral-treated and untreated women. Higher milk CMV load was associated with lower length-for-age (−0.53, 95% CI: −0.96, −0.10) and weight-for-age (−0.40, 95% CI: −0.67, −0.13) Z-score at six months in exposed, uninfected infants. As the impact of maternal antiretroviral therapy on the magnitude of postnatal CMV exposure may be limited, our findings of an inverse relationship between infant growth and milk CMV load highlight the importance of defining the role of perinatal CMV exposure on growth faltering of HIV-exposed infants

    Limited Contribution of Mucosal IgA to Simian Immunodeficiency Virus (SIV)-Specific Neutralizing Antibody Response and Virus Envelope Evolution in Breast Milk of SIV-Infected, Lactating Rhesus Monkeysâ–¿

    No full text
    Breast milk transmission of human immunodeficiency virus (HIV) remains an important mode of infant HIV acquisition. Interestingly, the majority of infants remain uninfected during prolonged virus exposure via breastfeeding, raising the possibility that immune components in milk prevent mucosal virus transmission. HIV-specific antibody responses are detectable in the milk of HIV-infected women and simian immunodeficiency virus (SIV)-infected monkeys; however, the role of these humoral responses in virus neutralization and local virus quasispecies evolution has not been characterized. In this study, four lactating rhesus monkeys were inoculated with SIVmac251 and monitored for SIV envelope-specific humoral responses and virus evolution in milk and plasma throughout infection. While the kinetics and breadth of the SIV-specific IgG and IgA responses in milk were similar to those in plasma, the magnitude of the milk responses was considerably lower than that of the plasma responses. Furthermore, a neutralizing antibody response against the inoculation virus was not detected in milk samples at 1 year after infection, despite a measurable autologous neutralizing antibody response in plasma samples obtained from three of four monkeys. Interestingly, while IgA is the predominant immunoglobulin in milk, the milk SIV envelope-specific IgA response was lower in magnitude and demonstrated more limited neutralizing capacity against a T-cell line-adapted SIV compared to those of the milk IgG response. Finally, amino acid mutations in the envelope gene product of SIV variants in milk and plasma samples occurred in similar numbers and at similar positions, indicating that the humoral immune pressure in milk does not drive distinct virus evolution in the breast milk compartment
    corecore