6 research outputs found

    SN 2022vqz: A Peculiar SN 2002es-like Type Ia Supernova with Prominent Early Excess Emission

    Full text link
    We present extensive photometric and spectroscopic observations of a peculiar type Ia supernova (SN Ia) 2022vqz. It shares many similarities with the SN 2002es-like SNe Ia, such as low luminosity (i.e., MB,max=−18.11±0.16M_{B,\rm max}=-18.11\pm0.16 mag) and moderate post-peak decline rate (i.e., Δm15,B=1.33±0.11\Delta m_{15,B}=1.33\pm0.11 mag). The nickel mass synthesized in the explosion is estimated as 0.20±0.04 M⊙0.20\pm0.04~{\rm M}_\odot from the bolometric light curve, which is obviously lower than normal SNe Ia. SN 2022vqz is also characterized by a slow expanding ejecta, with Si II velocities persisting around 7000 km s−1^{-1} since 16 days before the peak, which is unique among all known SNe Ia. While all these properties imply a less energetic thermonuclear explosion that should leave considerable amount of unburnt materials, however, absent signature of unburnt carbon in the spectra of SN 2022vqz is puzzling. A prominent early peak is clearly detected in the cc- and oo-band light curves of ATLAS and in the grgr-band data of ZTF within days after the explosion. Possible mechanisms for the early peak are discussed, including sub-Chandrasekhar mass double detonation model and interaction of SN ejecta with circumstellar material (CSM). We found both models face some difficulties in replicating all aspects of the observed data. As an alternative, we propose a hybrid CONe white dwarf as progenitor of SN 2022vqz which can simultaneously reconcile the tension between low ejecta velocity and absence of carbon. We further discuss the diversity of 02es-like objects and possible origins of different scenarios.Comment: 24 pages, 12 figures, submitted to MNRA

    Energy Spectra of Atmospheric Turbulence for Calculating Cn2 Parameter. I. Maidanak and Suffa Observatories in Uzbekistan

    No full text
    Knowledge of the turbulence spectra is of interest for describing atmospheric conditions as applied to astronomical observations. This article discusses the deformations of the turbulence spectra with heights in a wide range of scales at the sites of the Maidanak and Suffa observatories. It is shown that the energy of baroclinic instability is high at the sites of these observatories and should be taken into account in the calculations of the refractive index structure constant Cn2

    Energy Spectra of Atmospheric Turbulence for Calculating <inline-formula><math display="inline"><semantics><msubsup><mi>C</mi><mi>n</mi><mn>2</mn></msubsup></semantics></math></inline-formula> Parameter. I. Maidanak and Suffa Observatories in Uzbekistan

    No full text
    Knowledge of the turbulence spectra is of interest for describing atmospheric conditions as applied to astronomical observations. This article discusses the deformations of the turbulence spectra with heights in a wide range of scales at the sites of the Maidanak and Suffa observatories. It is shown that the energy of baroclinic instability is high at the sites of these observatories and should be taken into account in the calculations of the refractive index structure constant Cn2
    corecore