9 research outputs found

    New Linear Codes from Matrix-Product Codes with Polynomial Units

    Get PDF
    A new construction of codes from old ones is considered, it is an extension of the matrix-product construction. Several linear codes that improve the parameters of the known ones are presented

    Remaining inconsistencies with solar neutrinos: can spin flavour precession provide a clue?

    Full text link
    A few inconsistencies remain after it has been ascertained that LMA is the dominant solution to the solar neutrino problem: why is the SuperKamiokande spectrum flat and why is the Chlorine rate prediction over two standard deviations above the data. There also remains the ananswered and important question of whether the active neutrino flux is constant or time varying. We propose a scenario involving spin flavour precession to sterile neutrinos with three active flavours that predicts a flat SuperK spectrum and a Chlorine rate prediction more consistent with data. We also argue that running the Borexino experiment during the next few years may provide a very important clue as to the possible variability of the solar neutrino flux.Comment: 3 pages, 2 figures, contribution to TAUP 2009 (Rome

    Lepton Number Violation in TeV Scale See-Saw Extensions of the Standard Model

    Full text link
    The low-energy neutrino physics constraints on the TeV scale type I see-saw scenarios of neutrino mass generation are revisited. It is shown that lepton charge (L) violation, associated to the production and decays of heavy Majorana neutrinos N_{j} having masses in the range of M_j \sim (100 \div 1000) GeV and present in such scenarios, is hardly to be observed at ongoing and future particle accelerator experiments, LHC included, because of very strong constraints on the parameters and couplings responsible for the corresponding |\Delta L| = 2 processes. If the heavy Majorana neutrinos N_j are observed and they are associated only with the type I mechanism, they will behave effectively like pseudo-Dirac fermions. Conversely, the observation of effects proving the Majorana nature of N_j would imply that these heavy neutrinos have additional relatively strong couplings to the Standard Model particles or that light neutrino masses compatible with the observations are generated by a mechanism other than see-saw (e.g., radiatively at one or two loop level) in which the heavy Majorana neutrinos N_j are nevertheless involved.Comment: Contribution to the Proceedings of DISCRETE 2010- Symposium on Prospects in the Physics of Discrete Symmetries, 8 page

    Testing the solar LMA region with KamLAND data

    Get PDF
    We investigate the potential of 3 kiloTon-years(kTy) of KamLAND data to further constrain the Δm2\Delta m^2 and tan2θ\tan^2\theta values compared to those presently allowed by existing KamLAND and global solar data. We study the extent, dependence and characteristics of this sensitivity in and around the two parts of the LMA region that are currently allowed. Our analysis with 3 kTy simulated spectra shows that KamLAND spectrum data by itself can constrain Δm2\Delta m^2 with high precision. Combining the spectrum with global solar data further tightens the constraints on allowed values of tan2θ\tan^2\theta and Δm2\Delta m^2. We also study the effects of future neutral current data with a total error of 7% from the Sudbury Neutrino Observatory. We find that these future measurements offer the potential of considerable precision in determining the oscillation parameters (specially the mass parameter).Comment: 16 pages, to appear in J Phys.
    corecore