36 research outputs found

    Single-dish and VLBI observations of Cygnus X-3 during the 2016 giant flare episode

    Get PDF
    In September 2016, the microquasar Cygnus X-3 underwent a giant radio flare, which was monitored for 6 days with the Medicina Radio Astronomical Station and the Sardinia Radio Telescope. Long observations were performed in order to follow the evolution of the flare on a hourly scale, covering six frequency ranges from 1.5 GHz to 25.6 GHz. The radio emission reached a maximum of 13.2 +/- 0.7 Jy at 7.2 GHz and 10 +/- 1 Jy at 18.6 GHz. Rapid flux variations were observed at high radio frequencies at the peak of the flare, together with rapid evolution of the spectral index: alpha steepened from 0.3 to 0.6 within 5 hours. This is the first time that such fast variations are observed, giving support to the evolution from optically thick to optically thin plasmons in expansion moving outward from the core. Based on the Italian network (Noto, Medicina and SRT) and extended to the European antennas (Torun, Yebes, Onsala), VLBI observations were triggered at 22 GHz on five different occasions, four times prior to the giant flare, and once during its decay phase. Flux variations of 2-hour duration were recorded during the first session. They correspond to a mini-flare that occurred close to the core ten days before the onset of the giant flare. From the latest VLBI observation we infer that four days after the flare peak the jet emission was extended over 30 mas

    A multi-wavelength pipeline for pulsar searches

    Get PDF
    Pulsar studies in the recent years have shown, more than others, to have benefited from a multi-wavelength approach. The INAF - Astronomical Observatory in Cagliari (INAF-OAC) is a growing facility with a young group devoted to pulsar and fast transients studies across the electromagnetic spectrum. Taking advantage of this expertise we have worked to provide a suite of multi-wavelength software and databases for the observations of pulsars and compact Galactic objects at the Sardinia Radio Telescope (SRT). In turn, radio pulsar observations at SRT will be made available, in a processed format, to gamma-ray searches using AGILE and Fermi gamma-ray satellite and, in a near future, they will be complementary to polarimetric X-ray observations with IXPE.Comment: Accepted for publications in Rendiconti Lincei as Proceedings of "A Decade of AGILE: Results, Challenges and Prospects of Gamma-Ray Astrophysics

    Long-term Study of the Double Pulsar J0737-3039 with XMM-Newton: Spectral Analysis

    Get PDF
    We present a long-term spectral monitoring of the unique double pulsar binary PSR J0737-3039 corresponding to two “Large Programs” performed by XMM-Newton in 2006 and 2011. Spectral variability of pulsar emission in soft X-rays is not evident over 5 years, despite the significant relativistic spin precession in the considered time span (∼ 25^\circ ). We provide, for the first time, evidence of hard X-ray emission from the system in the 5─8 keV energy band. The standard spectral analysis was coupled to the energy dependent spatial analysis to confirm this excess, most likely ascribed to iron line emission. The Fe Kα emission line at 6.4─6.97 keV was previously unheard of in non-accreting binary systems and could testify to the presence of a relic disk that survived the supernova explosions that terminated the lives of the double pulsar’s stellar progenitors. The existence of a relic disk in this system reinforces speculation about the presence of similar structures around other peculiar classes of isolated neutron stars

    A multi-wavelength pipeline for pulsar observations

    Get PDF
    The Astronomical Observatory in Cagliari (OAC) is a growing facility with a group devoted to pulsar studies across the electromagnetic spectrum. Taking advantage of this expertise we have worked to provide a suite of multi-wavelength software and databases for the observations of pulsars and compact Galactic objects at the Sardinia Radio Telescope (SRT, Bolli et al. 2015, Prandoni et al. 2017)

    A dedicated pipeline to analyse solar data with INAF radio telescopes: SUNPIT (SUNdish PIpeline Tool)

    Get PDF
    This technical note describes SUNPIT (SUNdish PIpeline Tool) - the pipeline aimed at the imaging procedure and the data analysis of the radio solar data - and guides the user to properly reduce and analyse the solar data. SUNPIT is designed for radio data acquired with some radio telescopes of the INAF Network: the Sardinia Radio Telescope (SRT), and the Medicina Radio Telescope. The present user manual follows the development of software for solar imaging and data analysis of Active Regions (ARs), performed in the framework of the INAF Proposal "SunDish Project" (PI: A. Pellizzoni). This project has been active since 2018 with the goal of monitoring the solar atmosphere at high radio frequencies (at present 18 - 26 GHz) through single-dish observations. These solar observations will be enhanced through the upgrading of SRT with the new cryogenically cooled receivers, including a 19-feed in Q-band (33 - 50 GHz) and a 16-feed in W-band (75 - 116 GHz), in the context of the National Operative Programme (Programma Operativo Nazionale-PON); this project will provide in the near future an upgrading with the new receivers up to 116 GHz also for the Medicina and Noto Radio Telescopes, to provide the scientific community with the instrumentation suited to the study of the Universe at high radio frequencies. SUNPIT will be suitable for the data of these new forthcoming receivers, when available for the scientific community. SUNPIT produces a complete analysis of a solar map in about one hour, saving a directory which contains images, plots and several tables with the physical information of the solar disk and ARs (brightness temperatures, fluxes and spectral indices, with the respective errors). This pipeline – successfully tested – represents a crucial tool (1) to analyse solar images observed with the radio telescopes of the INAF Network, and (2) for the Space Weather monitoring network and forecast (soon available) along the solar cycle

    C-band observations of supernova remnants with SRT: 2 - Calibrations

    Get PDF
    Following to the Astronomical Validation report n°6 (AV-rep-006; Egron et al. 2015) dedicated to the C-band imaging performances of SRT through the observation of two Supernova Remnants (3C157 and W44), this second note is devoted to the calibration of the resulting maps

    Long-term Study of the Double Pulsar J0737-3039 with XMM-Newton: Pulsar Timing

    Get PDF
    The relativistic double neutron star binary PSR J0737-3039 shows clear evidence of orbital phase-dependent wind-companion interaction, both in radio and X-rays. In this paper, we present the results of timing analysis of PSR J0737-3039 performed during 2006 and 2011 XMM-Newton Large Programs that collected ∼20,000 X-ray counts from the system. We detected pulsations from PSR J0737-3039A (PSR A) through the most accurate timing measurement obtained by XMM-Newton so far, the spin period error being of 2 × 10-13 s. PSR A’s pulse profile in X-rays is very stable despite significant relativistic spin precession that occurred within the time span of observations. This yields a constraint on the misalignment between the spin axis and the orbital momentum axis {δ }{{A}}≈ {6.6}-5.4+1.3 deg, consistent with estimates based on radio data. We confirmed pulsed emission from PSR J0737-3039B (PSR B) in X-rays even after its disappearance in radio. The unusual phenomenology of PSR B’s X-ray emission includes orbital pulsed flux and profile variations as well as a loss of pulsar phase coherence on timescales of years. We hypothesize that this is due to the interaction of PSR A’s wind with PSR B’s magnetosphere and the orbital-dependent penetration of the wind plasma onto PSR B closed field lines. Finally, the analysis of the full XMM-Newton data set provided evidence of orbital flux variability (∼7%) for the first time, involving a bow-shock scenario between PSR A’s wind and PSR B’s magnetosphere

    Single-dish total power imaging of bright sources: mapping of 3c295 in C-band and K-band

    Get PDF
    In the frame of AV tests “Single-­‐Dish Total Power Imaging of Bright Sources (I:s/w test)” (AV SNR1 test) we performed C band and K band (only central feed) imaging of point-­‐like bright calibration sources (i.e. 3C295 in particular)

    C-band observations of supernova remnants with SRT: 1 - Imaging performances

    Get PDF
    We report on observations of Supernova Remnants (SNR) with SRT in the frame of Astronomical Validation (AV) test activities. These tests are aimed to assess single-dish imaging performances of “SRT first light receivers” coupled with Total Power (TP) backend and related hw/sw subsystems/procedures (including innovative ad hoc imaging techniques based on OTF scans)

    Tracking the X-Ray Polarization of the Black Hole Transient Swift J1727.8–1613 during a State Transition

    Get PDF
    We report on an observational campaign on the bright black hole (BH) X-ray binary Swift J1727.8–1613 centered around five observations by the Imaging X-ray Polarimetry Explorer. These observations track for the first time the evolution of the X-ray polarization of a BH X-ray binary across a hard to soft state transition. The 2–8 keV polarization degree decreased from ∼4% to ∼3% across the five observations, but the polarization angle remained oriented in the north–south direction throughout. Based on observations with the Australia Telescope Compact Array, we find that the intrinsic 7.25 GHz radio polarization aligns with the X-ray polarization. Assuming the radio polarization aligns with the jet direction (which can be tested in the future with higher-spatial-resolution images of the jet), our results imply that the X-ray corona is extended in the disk plane, rather than along the jet axis, for the entire hard intermediate state. This in turn implies that the long (≳10 ms) soft lags that we measure with the Neutron star Interior Composition ExploreR are dominated by processes other than pure light-crossing delays. Moreover, we find that the evolution of the soft lag amplitude with spectral state does not follow the trend seen for other sources, implying that Swift J1727.8–1613 is a member of a hitherto undersampled subpopulation
    corecore