3,120 research outputs found

    Revealing the nature of central emission nebulae in the dwarf galaxy NGC 185

    Full text link
    In this paper we present new optical observations of the galaxy NGC 185 intended to reveal the status of supernova remnants (SNRs) in this dwarf companion of the Andromeda galaxy. Previously, it was reported that this galaxy hosts one SNR. Our deep photometric study with the 2m telescope at Rozhen National Astronomical Observatory using narrow-band Hα\alpha and [SII] filters revealed complex structure of the interstellar medium in the center of the galaxy. To confirm the classification and to study the kinematics of the detected nebulae, we carried out spectroscopic observations using the SCORPIO multi-mode spectrograph at the 6m telescope at the Special Astrophysical Observatory of the Russian Academy of Science, both in low- and high-resolution modes. We also searched the archival X-ray and radio data for counterparts of the candidate SNRs identified by our optical observations. Our observations imply the presence of one more SNR, one possible HII region previously cataloged as part of an SNR, and the presence of an additional source of shock ionization in one low-brightness PN. We detected enhanced [SII]/H_alpha and [NII]/H_alpha line ratios, as well as relatively high (up to 90 km s1^{-1}) expansion velocities of the two observed nebulae, motivating their classification as SNRs (with diameters of 45 pc and 50 pc), confirmed by both photometric and spectral observations. The estimated electron density of emission nebulae is 30 - 200 cm3^{-3}. Archival XMM-Newton observations indicate the presence of an extended, low-brightness, soft source in projection of one of the optical SNRs, whereas the archival VLA radio image shows weak, unresolved emission in the center of NGC 185.Comment: 15 pages, 14 figures, accepted for publication in A&

    Spin-dependent electron dynamics and recombination in GaAs(1-x)N(x) alloys at room temperature

    Full text link
    We report on both experimental and theoretical study of conduction-electron spin polarization dynamics achieved by pulsed optical pumping at room temperature in GaAs(1-x)N(x) alloys with a small nitrogen content (x = 2.1, 2.7, 3.4%). It is found that the photoluminescence circular polarization determined by the mean spin of free electrons reaches 40-45% and this giant value persists within 2 ns. Simultaneously, the total free-electron spin decays rapidly with the characteristic time ~150 ps. The results are explained by spin-dependent capture of free conduction electrons on deep paramagnetic centers resulting in dynamical polarization of bound electrons. We have developed a nonlinear theory of spin dynamics in the coupled system of spin-polarized free and localized carriers which describes the experimental dependencies, in particular, electron spin quantum beats observed in a transverse magnetic field.Comment: 5 pages, 4 figures, Submitted to JETP Letter

    Soliton topology versus discrete symmetry in optical lattices

    Full text link
    We address the existence of vortex solitons supported by azimuthally modulated lattices and reveal how the global lattice discrete symmetry has fundamental implications on the possible topological charges of solitons. We set a general ``charge rule'' using group-theory techniques, which holds for all lattices belonging to a given symmetry group. Focusing in the case of Bessel lattices allows us to derive also a overall stability rule for the allowed vortex solitons.Comment: 4 pages, 3 figures. To appear in Phys. Rev. Let

    Absorption/Expulsion of Oligomers and Linear Macromolecules in a Polymer Brush

    Full text link
    The absorption of free linear chains in a polymer brush was studied with respect to chain size LL and compatibility χ\chi with the brush by means of Monte Carlo (MC) simulations and Density Functional Theory (DFT) / Self-Consistent Field Theory (SCFT) at both moderate, σg=0.25\sigma_g = 0.25, and high, σg=1.00\sigma_g = 1.00, grafting densities using a bead-spring model. Different concentrations of the free chains 0.0625ϕo0.3750.0625 \le \phi_o \le 0.375 are examined. Contrary to the case of χ=0\chi = 0 when all species are almost completely ejected by the polymer brush irrespective of their length LL, for χ<0\chi < 0 we find that the degree of absorption (absorbed amount) Γ(L)\Gamma(L) undergoes a sharp crossover from weak to strong (100\approx 100%) absorption, discriminating between oligomers, 1L81\le L\le 8, and longer chains. For a moderately dense brush, σg=0.25\sigma_g = 0.25, the longer species, L>8L > 8, populate predominantly the deep inner part of the brush whereas in a dense brush σg=1.00\sigma_g = 1.00 they penetrate into the "fluffy" tail of the dense brush only. Gyration radius RgR_g and end-to-end distance ReR_e of absorbed chains thereby scale with length LL as free polymers in the bulk. Using both MC and DFT/SCFT methods for brushes of different chain length 32N25632 \le N \le 256, we demonstrate the existence of unique {\em critical} value of compatibility χ=χc<0\chi = \chi^{c}<0. For χc(ϕo)\chi^{c}(\phi_o) the energy of free chains attains the {\em same} value, irrespective of length LL whereas the entropy of free chain displays a pronounced minimum. At χc\chi^{c} all density profiles of absorbing chains with different LL intersect at the same distance from the grafting plane. The penetration/expulsion kinetics of free chains into the polymer brush after an instantaneous change in their compatibility χ\chi displays a rather rich behavior. We find three distinct regimes of penetration kinetics of free chains regarding the length LL: I (1L81\le L\le 8), II (8LN8 \le L \le N), and III (L>NL > N), in which the time of absorption τ\tau grows with LL at a different rate. During the initial stages of penetration into the brush one observes a power-law increase of Γtα\Gamma \propto t^\alpha with power αlnϕo\alpha \propto -\ln \phi_o whereby penetration of the free chains into the brush gets {\em slower} as their concentration rises
    corecore