14 research outputs found

    Use of a thin liquid film moving under the action of gas flow in a mini-channel for removing high heat fluxes

    Get PDF
    Intensively evaporating liquid films shear-driven in a mini- or micro-channel under the action of cocurrent gas flow are promising for the use in modern cooling systems of semiconductor devices. In this work, we investigated the influence of liquid and gas flow rates on the critical heat flux in a locally heated film of water, moving under the action of air flow in a mini-channel. In experiments a record value of critical heat flux of 870 W/cm{2} was reached. Heat spreading into the substrate and heat losses to the atmosphere in total do not exceed 25 % at heat fluxes above 400 W/cm{2} . A comparison with the critical heat flux for water flow boiling in the channel shows that, for shear-driven liquid films the critical heat flux is almost an order of magnitude higher

    Use of a thin liquid film moving under the action of gas flow in a mini-channel for removing high heat fluxes

    Get PDF
    Intensively evaporating liquid films shear-driven in a mini- or micro-channel under the action of cocurrent gas flow are promising for the use in modern cooling systems of semiconductor devices. In this work, we investigated the influence of liquid and gas flow rates on the critical heat flux in a locally heated film of water, moving under the action of air flow in a mini-channel. In experiments a record value of critical heat flux of 870 W/cm{2} was reached. Heat spreading into the substrate and heat losses to the atmosphere in total do not exceed 25 % at heat fluxes above 400 W/cm{2} . A comparison with the critical heat flux for water flow boiling in the channel shows that, for shear-driven liquid films the critical heat flux is almost an order of magnitude higher

    An experimental model of evaporative cooling system with forced circulation of coolant for high-performance electronic components

    Full text link
    A promising way to remove heat fluxes from the surfaces of electronic devices with high heat generation is the use of evaporating thin liquid film, moving under the action of gas flow in a channel. On the basis of the studies conducted previously, we have developed a pilot model of the experimental-industrial prototype for removing heat fluxes with densities of up to 1000 W/cm2 from the surface of the heat-stressed element with dimensions 10x10 mm2. Testing of the model has proved its efficiency in continuous operation

    An experimental study of high heat flux removal by shear-driven liquid films

    Full text link
    Intensively evaporating liquid films, moving under the friction of a co-current gas flow in a mini-channel (shear-driven liquid films), are promising for the use in cooling systems of modern semiconductor devices with high local heat release. In this work, the effect of various parameters, such as the liquid and gas flow rates and channel height, on the critical heat flux in the locally heated shear-driven water film has been studied. A record value of the critical heat flux of 1200 W/cm2 has been achieved in experiments. Heat leaks to the substrate and heat losses to the atmosphere in total do not exceed 25% for the heat flux above 400 W/cm2. Comparison of the critical heat fluxes for the shear-driven liquid film and for flow boiling in a minichannel shows that the critical heat flux is an order of magnitude higher for the shear-driven liquid film. This confirms the prospect of using shear-driven liquid films in the modern high-efficient cooling systems

    Dynamics of dry spots in the liquid film moved by the gas flow in the mini-channel under intensive local heating

    No full text
    Experimental studies of hydrodynamics and the heat transfer crisis were carried out for a two-phase stratified flow in a mini-channel with intensive heating from a heat source of 1x1 cm2. It has been established that as the heat flow increases, the total area of dry spots on the heater increases, but when a certain temperature of the heater surface reaches β‰ˆ100 Β°C, the area of dry spots begins to decrease. With the help of high-speed visualization (shooting speed 100000 frames per second), several stages of formation of a dry spot (a typical size of the order of 100 microns) were isolated. It was found that at a heat flux of 450 W/cm2 about 1 million dry spots per 1 second are formed and washed on the surface of the heater (1 cm2). The speed of the contact line when dry spot is forming reaches 10 m/s

    An experimental study of high heat flux removal by shear-driven liquid films

    No full text
    Intensively evaporating liquid films, moving under the friction of a co-current gas flow in a mini-channel (shear-driven liquid films), are promising for the use in cooling systems of modern semiconductor devices with high local heat release. In this work, the effect of various parameters, such as the liquid and gas flow rates and channel height, on the critical heat flux in the locally heated shear-driven water film has been studied. A record value of the critical heat flux of 1200 W/cm2 has been achieved in experiments. Heat leaks to the substrate and heat losses to the atmosphere in total do not exceed 25% for the heat flux above 400 W/cm2. Comparison of the critical heat fluxes for the shear-driven liquid film and for flow boiling in a minichannel shows that the critical heat flux is an order of magnitude higher for the shear-driven liquid film. This confirms the prospect of using shear-driven liquid films in the modern high-efficient cooling systems

    An experimental study of high heat flux removal by shear-driven liquid films

    No full text
    Intensively evaporating liquid films, moving under the friction of a co-current gas flow in a mini-channel (shear-driven liquid films), are promising for the use in cooling systems of modern semiconductor devices with high local heat release. In this work, the effect of various parameters, such as the liquid and gas flow rates and channel height, on the critical heat flux in the locally heated shear-driven water film has been studied. A record value of the critical heat flux of 1200 W/cm2 has been achieved in experiments. Heat leaks to the substrate and heat losses to the atmosphere in total do not exceed 25% for the heat flux above 400 W/cm2. Comparison of the critical heat fluxes for the shear-driven liquid film and for flow boiling in a minichannel shows that the critical heat flux is an order of magnitude higher for the shear-driven liquid film. This confirms the prospect of using shear-driven liquid films in the modern high-efficient cooling systems

    Two-phase cooling system with controlled pulsations

    No full text
    One of the promising ways of removing large heat fluxes from the surface of heat-stressed elements of electronic devices is the use of evaporating thin layer of liquid film, moving under the action of the gas flow in a flat channel. In this work, a prototype of evaporative cooling system for high heat flux removal with forced circulation of liquid and gas coolants with controlled pulsation, capable to remove heat flux of up to 1,5 kW/cm2 and higher was presented. For the first time the regime with controlled pulsation is used. Due to pulsations, it is possible to achieve high values of critical heat flux due to a brief increase in the flow rate of the liquid, which allows to "wash off" large dry spots and prevent the occurrence of zones of flow and drying

    The Effect of Inclination Angle on Critical Heat Flux in a Locally Heated Liquid Film Moving Under the Action of Gas Flow in a Mini-Channel

    No full text
    Intensively evaporating liquid films moving under the action of the cocurrent gas flow in a microchannel are promising for the use in modern cooling systems of semiconductor devices with high local heat release. This work has studied the dependence of the critical heat flux on the inclination angle of the channel. It has been found that the inclination angle in the plane parallel to the flow has no significant effect on the critical heat flux. Whereas the inclination angle in the plane perpendicular to the flow, on the contrary, significantly changes the value of the critical heat flux. However, for a given flow rate of fluid there is a threshold gas velocity at which the critical heat flux does not differ from the case of zero inclination of the channel. Thus, it can be concluded that the cooling system based on shear-driven liquid films can be potentially used when direction of the gravity changes

    The Effect of Inclination Angle on Critical Heat Flux in a Locally Heated Liquid Film Moving Under the Action of Gas Flow in a Mini-Channel

    No full text
    Intensively evaporating liquid films moving under the action of the cocurrent gas flow in a microchannel are promising for the use in modern cooling systems of semiconductor devices with high local heat release. This work has studied the dependence of the critical heat flux on the inclination angle of the channel. It has been found that the inclination angle in the plane parallel to the flow has no significant effect on the critical heat flux. Whereas the inclination angle in the plane perpendicular to the flow, on the contrary, significantly changes the value of the critical heat flux. However, for a given flow rate of fluid there is a threshold gas velocity at which the critical heat flux does not differ from the case of zero inclination of the channel. Thus, it can be concluded that the cooling system based on shear-driven liquid films can be potentially used when direction of the gravity changes
    corecore