4 research outputs found

    Hot or not? Discovery and characterization of a thermostable alditol oxidase from Acidothermus cellulolyticus 11B

    Get PDF
    We describe the discovery, isolation and characterization of a highly thermostable alditol oxidase from Acidothermus cellulolyticus 11B. This protein was identified by searching the genomes of known thermophiles for enzymes homologous to Streptomyces coelicolor A3(2) alditol oxidase (AldO). A gene (sharing 48% protein sequence identity to AldO) was identified, cloned and expressed in Escherichia coli. Following 6xHis tag purification, characterization revealed the protein to be a covalent flavoprotein of 47 kDa with a remarkably similar reactivity and substrate specificity to that of AldO. A steady-state kinetic analysis with a number of different polyol substrates revealed lower catalytic rates but slightly altered substrate specificity when compared to AldO. Thermostability measurements revealed that the novel AldO is a highly thermostable enzyme with an unfolding temperature of 84 °C and an activity half-life at 75 °C of 112 min, prompting the name HotAldO. Inspired by earlier studies, we attempted a straightforward, exploratory approach to improve the thermostability of AldO by replacing residues with high B-factors with corresponding residues from HotAldO. None of these mutations resulted in a more thermostable oxidase; a fact that was corroborated by in silico analysis

    Disaccharides impact the lateral organization of lipid membranes

    Get PDF
    Disaccharides are well-known for their membrane protective ability. Interaction between sugars and multicomponent membranes, however, remains largely unexplored. Here, we combine molecular dynamics simulations and fluorescence microscopy to study the effect of mono- and disaccharides on membranes that phase separate into Lo and Ld domains. We find that nonreducing disaccharides, sucrose and trehalose, strongly destabilize the phase separation leading to uniformly mixed membranes as opposed to monosaccharides and reducing disaccharides. To unveil the driving force for this process, simulations were performed in which the sugar linkage was artificially modified. The availability of accessible interfacial binding sites that can accommodate the nonreducing disaccharides is key for their strong impact on lateral membrane organization. These exclusive interactions between the nonreducing sugars and the membranes may rationalize why organisms such as yeasts, tardigrades, nematodes, bacteria, and plants accumulate sucrose and trehalose, offering cell protection under anhydrobiotic conditions. The proposed mechanism might prove to be a more generic way by which surface bound agents could affect membranes
    corecore