1 research outputs found

    Effect of Rotation Speed and Steel Microstructure on Joint Formation in Friction Stir Spot Welding of Al Alloy to DP Steel

    No full text
    In this work, friction stir spot welding of 5754 aluminum alloy to dual phase steel was investigated using two different ratios of martensite and ferrite (0.38 and 0.61) for steel sheet initial microstructure and varying tool rotation speed (800, 1200 and 2000 rpm). The effect of these parameters on the joint formation was evaluated by studying the plunging force response during the process and the main characteristics of the joint at (i) macrolevel, i.e., hook morphology and bond width, and (ii) microlevel, i.e., steel hook and sheet microstructure and intermetallic compounds. The plunging force was reduced by increased tool rotation speed while there was no significant effect from the initial steel microstructure ratio of martensite and ferrite on the plunging force. The macrostructural characterization of the joints showed that the hook morphology and bond width were affected by the steel sheet initial microstructures as well as by the tool rotation speed and by the material flow driver; tool pin or shoulder. At microstructural level, a progressive variation in the ratio of martensite and ferrite was observed for the steel hook and sheet microstructure. The zones closer to the tool presented a fully martensitic microstructure while the zones away from the tool showed a gradual increase in the ferrite amount until reaching the ratio of ferrite and martensite of the steel sheet initial microstructure. Different types of FexAly intermetallic compounds were found in three zones of the joint; the hook tips, in the hooks close to the exit hole and in the corner of the exit hole. These compounds were characterized by a brittle behavior with hardness values varying from 456 to 937 HV01
    corecore