51 research outputs found

    Potential phosphorus leaching from sandy topsoils with different fertilizer histories before and after application of pig slurry

    Get PDF
    This study investigated the effects of historical long-term and recent single applications of pig slurry on P leaching from intact columns of two sandy topsoils (Mellby and Böslid). The soils had similar physical properties, but different soil P status (ammonium lactate-extractable P; P-AL) and degree of P saturation (DPS-AL). Mellby had P-AL of 220-280 mg kg-1 and DPS-AL of 32-42%, which was higher than for Böslid (P-AL 140 mg kg-1 and DPS 21%). The study investigated the effects since 1983 of four treatments with different fertilizer histories, in summary high (HighSlurryMellby) and low (LowSlurryMellby) rates of pig slurry and mineral P (MinMellby) applications at Mellby and mineral P application at Böslid (MinBöslid). The columns were irrigated in the laboratory five times before and five times after a single application of pig slurry (22 kg P ha-1). Concentrations of dissolved reactive P (DRP), dissolved organic P and total-P (TP) in leachate and loads were significantly higher (p <0.005) from the treatments at Mellby than those at Böslid. TP concentrations followed the trend: HighSlurryMellby (0.57-0.59 mg L-1) > MinMellby (0.41-0.49 mg L-1) > LowSlurryMellby (0.31-0.36 mg L-1) > MinBöslid (0.14-0.15 mg L-1), both before and after the single slurry application. DRP concentrations in leachate were positively correlated with DPS-AL values in the topsoil (R2=0.95, p<0.0001), and increased with greater DPS-AL values after the single slurry application (R2=0.79, p<0.0001). Thus, DPS-AL can be an appropriate indicator of P leaching risk from sandy soils. Moreover, the build-up of soil P due to long-term repeated manure applications seems to be more important for potential P losses than a single manure application

    Particulate-facilitated leaching of glyphosate and phosphorus from a marine clay soil via tile drains

    Get PDF
    Losses of commonly used chemical pesticides from agricultural land may cause serious problems in recipient waters in a similar way to phosphorus (P). Due to analytical challenges concerning determination of glyphosate (Gly), transport behaviour of this widely used herbicide is still not well-known. The objective of the present study was to quantify and evaluate leaching of Gly in parallel with P. Leaching losses of autumn-applied Gly (1.06 kg ha-1) via drainage water were examined by flow-proportional sampling of discharge from 20 drained plots in a field experiment in eastern Sweden. Samples were analysed for Gly in particulate-bound (PGly) and dissolved (DGly) form. The first 10 mm water discharge contained no detectable Gly, but the following 70 mm had total Gly (TotGly) concentrations of up to 6 ”g L-1, with 62% occurring as PGly. On average, 0.7 g TotGly ha-1 was leached from conventionally ploughed plots, compared with 1.7 g TotGly ha-1 from shallow-tilled plots (cultivator to 12 cm working depth). Higher Gly losses occurred in snowmelt periods in spring, but then with the majority (60%) as DGly. All autumn concentrations of PGly in drainage water were significantly correlated (p<0.001) to the concentrations of particulate-bound phosphorus (PP) lost from the different plots (Pearson correlation coefficient 0.84), while PP concentrations were in turn significantly correlated to water turbidity (Pearson correlation coefficient 0.81). Leaching losses of TotGly were significantly lower (by 1.3 g ha-1; p<0.01) from plots that had been structure-limed three years previously and ploughed thereafter than from shallow-tilled plots. Turbidity and PP concentration also tended to be lowest in discharge from structure-limed plots and highest from shallow-tilled plots. This difference in TotGly leaching between soil management regimes could not be explained by differences in measured pH in drainage water or amount of discharge. However, previously structure-limed plots had significantly better aggregate stability, measured as readily dispersed clay (RDC), than unlimed plots. The effects of building up good soil structure, with strong soil aggregates and an appropriate pore system in the topsoil, on mitigating Gly and P losses in particulate and dissolved form should be further investigated

    Phosphorus Availability in Soils Amended with Wheat Residue Char

    Get PDF
    Plant availability and risk for leaching and/or runoff losses of phosphorus (P) from soils depends among others on P concentration in the soil solution. Water soluble P in soil measures soil solution P concentration. The aim of this study was to understand the effect of wheat residue char (biochar) addition on water soluble P concentration in a wide range of biochar amended soils. Eleven agricultural fields representing dominant soil texture classes of Swedish agricultural lands were chosen. Concentrations of water soluble P in the soils and in biochar were measured prior to biochar incorporation to soils in the laboratory. Experiments with three dominant soil textures- silt loam, clay loam and an intermediate loam soil with different rates of biochar addition (i.e., 0.5, 1, 2 and 4%; w/w) showed that the highest concentration of water soluble P was achieved at an application rate of 1%. At higher application rates, P concentrations decreased which coincided with a pH increase of 0.3 - 0.7 units. When the eleven soils were amended with 1% (w/w) biochar, water soluble P concentrations increased in most of the soils ranging from 11 to 253%. However, much of the water soluble P added through the biochar was retained (33 - 100%). We concluded that - wheat residue char can act as a source of soluble P; and low and high additions of biochar can have different effects on soil solution P concentration due to possible reactions with Ca and Mg added with biochar
    • 

    corecore