3 research outputs found

    IL-5 and GM-CSF, but Not IL-3, Promote the Proliferative Properties of Inflammatory-like and Lung Resident-like Eosinophils in the Blood of Asthma Patients

    No full text
    Blood eosinophils can be described as inflammatory-like (iEOS-like) and lung-resident-like (rEOS-like) eosinophils. This study is based on the hypothesis that eosinophilopoetins such as interleukin (IL)-3 and IL-5 and granulocyte-macrophage colony-stimulating factor (GM-CSF) alter the proliferative properties of eosinophil subtypes and may be associated with the expression of their receptors on eosinophils. We investigated 8 individuals with severe nonallergic eosinophilic asthma (SNEA), 17 nonsevere allergic asthma (AA), and 11 healthy subjects (HS). For AA patients, a bronchial allergen challenge with Dermatophagoides pteronyssinus was performed. Eosinophils were isolated from peripheral blood using high-density centrifugation and magnetic separation methods. The subtyping of eosinophils was based on magnetic bead-conjugated antibodies against L-selectin. Preactivation by eosinophilopoetins was performed by incubating eosinophil subtypes with IL-3, IL-5, and GM-CSF, and individual combined cell cultures were prepared with airway smooth muscle (ASM) cells. ASM cell proliferation was assessed using an Alamar blue assay. The gene expression of eosinophilopoetin receptors was analyzed with a qPCR. IL-5 and GM-CSF significantly enhanced the proliferative properties of iEOS-like and rEOS-like cells on ASM cells in both SNEA and AA groups compared with eosinophils not activated by cytokines (p p < 0.05). In conclusion: IL-5 and GM-CSF promote the proliferative properties of iEOS-like and rEOS-like eosinophils; however, the effect of only IL-5 may be related to the expression of its receptors in asthma patients

    Blood Inflammatory-like and Lung Resident-like Eosinophils Affect Migration of Airway Smooth Muscle Cells and Their ECM-Related Proliferation in Asthma

    No full text
    Airway remodeling is a hallmark feature of asthma, and one of its key structural changes is increased airway smooth muscle (ASM) mass and disturbed extracellular matrix (ECM) homeostasis. Eosinophil functions in asthma are broadly defined; however, we lack knowledge about eosinophil subtypes&rsquo; interaction with lung structural cells and their effect on the airway&rsquo;s local microenvironment. Therefore, we investigated the effect of blood inflammatory-like eosinophils (iEOS-like) and lung resident-like eosinophils (rEOS-like) on ASM cells via impact on their migration and ECM-related proliferation in asthma. A total of 17 non-severe steroid-free allergic asthma (AA), 15 severe eosinophilic asthma (SEA) patients, and 12 healthy control subjects (HS) were involved in this study. Peripheral blood eosinophils were enriched using Ficoll gradient centrifugation and magnetic separation, subtyped by using magnetic separation against CD62L. ASM cell proliferation was assessed by AlamarBlue assay, migration by wound healing assay, and gene expression by qRT-PCR analysis. We found that blood iEOS-like and rEOS-like cells from AA and SEA patients&rsquo; upregulated genes expression of contractile apparatus proteins, COL1A1, FN, TGF-&beta;1 in ASM cells (p &lt; 0.05), and SEA eosinophil subtypes demonstrated the highest effect on sm-MHC, SM22, and COL1A1 gene expression. Moreover, AA and SEA patients&rsquo; blood eosinophil subtypes promoted migration of ASM cells and their ECM-related proliferation, compared with HS (p &lt; 0.05) with the higher effect of rEOS-like cells. In conclusion, blood eosinophil subtypes may contribute to airway remodeling by upregulating contractile apparatus and ECM component production in ASM cells, further promoting their migration and ECM-related proliferation, with a stronger effect of rEOS-like cells and in SEA

    Blood Inflammatory-like and Lung Resident-like Eosinophils Affect Migration of Airway Smooth Muscle Cells and Their ECM-Related Proliferation in Asthma

    No full text
    Airway remodeling is a hallmark feature of asthma, and one of its key structural changes is increased airway smooth muscle (ASM) mass and disturbed extracellular matrix (ECM) homeostasis. Eosinophil functions in asthma are broadly defined; however, we lack knowledge about eosinophil subtypes’ interaction with lung structural cells and their effect on the airway’s local microenvironment. Therefore, we investigated the effect of blood inflammatory-like eosinophils (iEOS-like) and lung resident-like eosinophils (rEOS-like) on ASM cells via impact on their migration and ECM-related proliferation in asthma. A total of 17 non-severe steroid-free allergic asthma (AA), 15 severe eosinophilic asthma (SEA) patients, and 12 healthy control subjects (HS) were involved in this study. Peripheral blood eosinophils were enriched using Ficoll gradient centrifugation and magnetic separation, subtyped by using magnetic separation against CD62L. ASM cell proliferation was assessed by AlamarBlue assay, migration by wound healing assay, and gene expression by qRT-PCR analysis. We found that blood iEOS-like and rEOS-like cells from AA and SEA patients’ upregulated genes expression of contractile apparatus proteins, COL1A1, FN, TGF-β1 in ASM cells (p p < 0.05) with the higher effect of rEOS-like cells. In conclusion, blood eosinophil subtypes may contribute to airway remodeling by upregulating contractile apparatus and ECM component production in ASM cells, further promoting their migration and ECM-related proliferation, with a stronger effect of rEOS-like cells and in SEA
    corecore