729 research outputs found
Pairing Correlations in Finite Systems: From the weak to the strong fluctuations regime
The Particle Number Projected Generator Coordinate Method is formulated for
the pairing Hamiltonian in a detailed way in the projection after variation and
the variation after projection methods. The dependence of the wave functions on
the generator coordinate is analyzed performing numerical applications for the
most relevant collective coordinates. The calculations reproduce the exact
solution in the weak, crossover and strong pairing regimes. The physical
insight of the Ansatz and its numerical simplicity make this theory an
excellent tool to study pairing correlations in complex situations and/or
involved Hamiltonians.Comment: Submitted to EPJ
A variational approach to approximate particle number projection with effective forces
Kamlah's second order method for approximate particle number projection is
applied for the first time to variational calculations with effective forces.
High spin states of normal and superdeformed nuclei have been calculated with
the finite range density dependent Gogny force for several nuclei. Advantages
and drawbacks of the Kamlah second order method as compared to the
Lipkin-Nogami recipe are thoroughly discussed. We find that the Lipkin-Nogami
prescription occasionally may fail to find the right energy minimum in the
strong pairing regime and that Kamlah's second order approach, though providing
better results than the LN one, may break down in some limiting situations.Comment: 16 pages, 8 figure
Approximate particle number projection with density dependent forces: Superdeformed bands in the A=150 and A=190 regions
We derive the equations for approximate particle number projection based on
mean field wave functions with finite range density dependent forces. As an
application ground bands of even-A superdeformed nuclei in the A=150 and A=190
regions are calculated with the Gogny force.
We discuss nuclear properties such as quadrupole moments, moments of inertia
and quasiparticle spectra, among others, as a function of the angular momentum.
We obtain a good overall description.Comment: 31 pages, 10 figures, 3 appendices. In press in Nucl. Phy
Triaxial Angular Momentum Projection and Configuration Mixing calculations with the Gogny force
We present the first implementation in the plane of the
generator coordinate method with full triaxial angular momentum and particle
number projected wave functions using the Gogny force. Technical details about
the performance of the method and the convergence of the results both in the
symmetry restoration and the configuration mixing parts are discussed in
detail. We apply the method to the study of Mg, the calculated energies
of excited states as well as the transition probabilities are compared to the
available experimental data showing a good overall agreement. In addition, we
present the RVAMPIR approach which provides a good description of the ground
and gamma bands in the absence of strong mixing.Comment: 40 pages,14 figure
Thermal shape fluctuation effects in the description of hot nuclei
The behavior of several nuclear properties with temperature is analyzed
within the framework of the Finite Temperature Hartree-Fock-Bogoliubov (FTHFB)
theory with the Gogny force and large configuration spaces. Thermal shape
fluctuations in the quadrupole degree of freedom, around the mean field
solution, are taken into account with the Landau prescription. As
representative examples the nuclei Er, Dy and Hg are
studied. Numerical results for the superfluid to normal and deformed to
spherical shape transitions are presented. We found a substantial effect of the
fluctuations on the average value of several observables. In particular, we get
a decrease in the critical temperature () for the shape transition as
compared with the plain FTHFB prediction as well as a washing out of the shape
transition signatures. The new values of are closer to the ones found in
Strutinsky calculations and with the Pairing Plus Quadrupole model Hamiltonian.Comment: 17 pages, 8 Figure
- …