3,964 research outputs found

    Impurities in S=1/2 Heisenberg Antiferromagnetic Chains: Consequences for Neutron Scattering and Knight Shift

    Full text link
    Non-magnetic impurities in an S=1/2 Heisenberg antiferromagnetic chain are studied using boundary conformal field theory techniques and finite-temperature quantum Monte Carlo simulations. We calculate the static structure function, S_imp(k), measured in neutron scattering and the local susceptibility, chi_i measured in Knight shift experiments. S_imp(k) becomes quite large near the antiferromagnetic wave-vector, and exhibits much stronger temperature dependence than the bulk structure function. \chi_i has a large component which alternates and increases as a function of distance from the impurity.Comment: 8 pages (revtex) + one postscript file with 6 figures. A complete postscript file with all figures + text (10pages) is available from http://fy.chalmers.se/~eggert/struct.ps or by request from [email protected] Submitted to Phys. Rev. Let

    Trapping of dielectric particles with light-induced space-charge fields

    Get PDF
    Light-induced space-charge fields in lithium niobate crystals are used to trap and manipulate dielectric particles on the surface of such crystals. Without any external voltage source, strong field gradients are present in the proximity of the crystal surface. These are used to trap particles with diameters in the range between 100 nm and some tens of micrometers

    Correlation Functions and Coulomb Blockade of Interacting Fermions at Finite Temperature and Size

    Full text link
    We present explicit expressions for the correlation functions of interacting fermions in one dimension which are valid for arbitrary system sizes and temperatures. The result applies to a number of very different strongly correlated systems, including mesoscopic quantum wires, quantum Hall edges, spin chains and quasi-one-dimensional metals. It is for example possible to calculate Coulomb blockade oscillations from our expression and determine their dependence on interaction strength and temperature. Numerical simulations show excellent agreement with the analytical results.Comment: 10 pages in revtex format including 2 embedded figures (using epsf). The latest complete postscript file is available from http://fy.chalmers.se/~eggert/papers/corrfcn.ps or by request from [email protected]

    Effect of Inter-Site Repulsions on Magnetic Susceptibility of One-Dimensional Electron Systems at Quarter-Filling

    Full text link
    The temperature dependence of the magnetic susceptibility, \chi (T), is investigated for one-dimensional interacting electron systems at quarter-filling within the Kadanoff-Wilson renormalization-group method. The forward scattering on the same branch (the g_4-process) is examined together with the backward (g_1) and forward (g_2) scattering amplitudes on opposite branches. In connection with lattice models, we show that \chi (T) is strongly enhanced by the nearest-neighbor interaction, an enhancement that surpasses one of the next-nearest-neighbor interaction. A connection between our predictions for \chi (T) and experimental results for \chi (T) in quasi-one-dimensional organic conductors is presented.Comment: 4 pages, 4 figures, to be published in Journal of the Physical Society of Japan, vol. 74, No. 1

    Numerical Evidence for Multiplicative Logarithmic Corrections from Marginal Operators

    Full text link
    Field theory calculations predict multiplicative logarithmic corrections to correlation functions from marginally irrelevant operators. However, for the numerically most suitable model - the spin-1/2 chain - these corrections have been controversial. In this paper, the spin-spin correlation function of the antiferromagnetic spin-1/2 chain is calculated numerically in the presence of a next nearest neighbor coupling J2 for chains of up to 32 sites. By varying the coupling strength J2 we can control the effect of the marginal operator, and our results unambiguously confirm the field theory predictions. The critical value at which the marginal operator vanishes has been determined to be at J2 = 0.241167 +/- 0.000005J.Comment: revised paper with extended data-analysis. 5 pages, using revtex with 4 embedded figures (included with macro). A complete postscript file with all figures + text (5 pages) is available from http://FY.CHALMERS.SE/~eggert/marginal.ps or by request from [email protected]

    Interaction effects between impurities in low dimensional spin-1/2 antiferromagnets

    Full text link
    We are considering the interplay between several non-magnetic impurities in the spin-1/2 Heisenberg antiferromagnet in chains, ladders and planes by introducing static vacancies in numerical quantum Monte Carlo simulations. The effective potential between two and more impurities is accurately determined, which gives a direct measure of the quantum correlations in the systems. Large effective interaction potentials are an indication of strong quantum correlations in the system and reflect the detailed nature of the valence bond ground states. In two-dimensions (2D) the interactions are smaller, but can still be analyzed in terms of valence bonds.Comment: 8 pages, 6 figures, accepted by Europhys. Lett. The latest pdf file is available at http://www.physik.uni-kl.de/eggert/papers/interact2d.pd

    Boundary Effects on Spectral Properties of Interacting Electrons in One Dimension

    Full text link
    The single electron Green's function of the one-dimensional Tomonaga-Luttinger model in the presence of open boundaries is calculated with bosonization methods. We show that the critical exponents of the local spectral density and of the momentum distribution change in the presence of a boundary. The well understood universal bulk behavior always crosses over to a boundary dominated regime for small energies or small momenta. We show this crossover explicitly for the large-U Hubbard model in the low-temperature limit. Consequences for photoemission experiments are discussed.Comment: revised and reformatted paper to appear in Phys. Rev. Lett. (Feb. 1996). 5 pages (revtex) and 3 embedded figures (macro included). A complete postscript file is available from http://FY.CHALMERS.SE/~eggert/luttinger.ps or by request from [email protected]

    Boundary susceptibility in the spin-1/2 chain: Curie like behavior without magnetic impurities

    Get PDF
    We investigate the low-temperature thermodynamics of the spin-1/2 Heisenberg chain with open ends. On the basis of boundary conformal field theory arguments and numerical density matrix renormalization group calculations, it is established that in the isotropic case the impurity susceptibility exhibits a Curie-like divergent behavior as the temperature decreases, even in the absence of magnetic impurities. A similar singular temperature dependence is also found in the boundary contributions of the specific heat coefficient. In the anisotropic case, for 1/2<Δ<11/2<\Delta<1, these boundary quantities still show singular temperature dependence obeying a power law with an anomalous dimension. Experimental consequences will be discussed.Comment: 5 pages, 1 figure, final versio
    corecore