2,557 research outputs found
Spin-orbit coupling and electron spin resonance for interacting electrons in carbon nanotubes
We review the theoretical description of spin-orbit scattering and electron
spin resonance in carbon nanotubes. Particular emphasis is laid on the effects
of electron-electron interactions. The spin-orbit coupling is derived, and the
resulting ESR spectrum is analyzed both using the effective low-energy field
theory and numerical studies of finite-size Hubbard chains and two-leg Hubbard
ladders. For single-wall tubes, the field theoretical description predicts a
double peak spectrum linked to the existence of spin-charge separation. The
numerical analysis basically confirms this picture, but also predicts
additional features in finite-size samples.Comment: 19 pages, 4 figures, invited review article for special issue in J.
Phys. Cond. Mat., published versio
Fluctuation relations and rare realizations of transport observables
Fluctuation relations establish rigorous identities for the nonequilibrium
averages of observables. Starting from a general transport master equation with
time-dependent rates, we employ the stochastic path integral approach to study
statistical fluctuations around such averages. We show how under nonequilibrium
conditions, rare realizations of transport observables are crucial and imply
massive fluctuations that may completely mask such identities. Quantitative
estimates for these fluctuations are provided. We illustrate our results on the
paradigmatic example of a mesoscopic RC circuit.Comment: 4 pages, 3 figures; v2: minor changes, published versio
Boundary interactions changing operators and dynamical correlations in quantum impurity problems
Recent developments have made possible the computation of equilibrium
dynamical correlators in quantum impurity problems. In many situations however,
one is rather interested in correlators subject to a non equilibrium initial
preparation; this is the case for instance for the occupation probability
in the double well problem of dissipative quantum mechanics (DQM). We
show in this paper how to handle this situation in the framework of integrable
quantum field theories by introducing ``boundary interactions changing
operators''. We determine the properties of these operators by using an
axiomatic approach similar in spirit to what is done for form-factors. This
allows us to obtain new exact results for ; for instance, we find that
that at large times (or small ), the leading behaviour for g < 1/2} is
, with the universal ratio.
.Comment: 4 pages, revte
Dynamical simulation of transport in one-dimensional quantum wires
Transport of single-channel spinless interacting fermions (Luttinger liquid)
through a barrier has been studied by numerically exact quantum Monte Carlo
methods. A novel stochastic integration over the real-time paths allows for
direct computation of nonequilibrium conductance and noise properties. We have
examined the low-temperature scaling of the conductance in the crossover region
between a very weak and an almost insulating barrier.Comment: REVTex, 4 pages, 2 uuencoded figures (submitted to Phys. Rev. Lett.
Measurement of the charged pion mass using X-ray spectroscopy of exotic atoms
The transitions in pionic nitrogen and muonic oxygen were measured
simultaneously by using a gaseous nitrogen-oxygen mixture at 1.4\,bar. Due to
the precise knowledge of the muon mass the muonic line provides the energy
calibration for the pionic transition. A value of
(139.57077\,\,0.00018)\,MeV/c (\,1.3ppm) is derived for the
mass of the negatively charged pion, which is 4.2ppm larger than the present
world average
External voltage sources and Tunneling in quantum wires
We (re) consider in this paper the problem of tunneling through an impurity
in a quantum wire with arbitrary Luttinger interaction parameter. By combining
the integrable approach developed in the case of Quantum Hall edge states with
the introduction of radiative boundary conditions to describe the adiabatic
coupling to reservoirs, we are able to obtain the exact equilibrium and non
equilibrium current. One of the most striking features observed is the
appearance of negative differential conductances out of equilibrium in the
strongly interacting regime g <=.2. In spite of the various charging effects, a
remarkable form of duality is still observed.
New results on the computation of transport properties in integrable impurity
problems are gathered in appendices. In particular, we prove that the TBA
results satisfy a remarkable relation, originally derived using the Keldysh
formalism, between the order T^2 correction to the current out of equilibrium
and the second derivative of this current at T=0 with respect to the voltage.Comment: 16 pages, 7 figure
The Transition Between Quantum Coherence and Incoherence
We show that a transformed Caldeira-Leggett Hamltonian has two distinct
families of fixed points, rather than a single unique fixed point as often
conjectured based on its connection to the anisotropic Kondo model. The two
families are distinguished by a sharp qualitative difference in their quantum
coherence properties and we argue that this distinction is best understood as
the result of a transition in the model between degeneracy and non-degeneracy
in the spectral function of the ``spin-flip'' operator.Comment: some typos corrected and a reference adde
Oscillator Strength of Metallic Carbon Nanotubes
Based on the tight binding method with hopping integral between the
nearest-neighbor atoms, an oscillator strength \int_0^{\infty} \d \omega {\rm
Re} \sigma (\omega) is discussed for armchair and metallic zigzag carbon
nanotubes. The formulae of the oscillator strength are derived for both types
of nanotubes and are compared with the result obtained by a linear chain model.
In addition, the doping dependence is investigated in the absence of Coulomb
interaction. It is shown that the oscillator strength of each carbon nanotube
shows qualitatively the same doping dependence, but the fine structure is
different due to it's own peculiar band structure. Some relations independent
of the radius of the tube are derived, and a useful formula for determining the
amount of doping is proposed.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jpn. at June 30, 200
One-dimensional Kondo lattice model as a Tomonaga-Luttinger liquid
Arguments are presented that in the one-dimensional Kondo lattice model
f-electron spins participate in filling of the Fermi sea. It is shown that in
its paramagnetic phase this model belongs to the spin-1/2 Tomonaga-Luttinger
liquid universality class. The ratio of the spin and charge velocities v_s/v_c
and K_c are estimated to be of the order of (T_K/E_F)^{1/2}.Comment: LaTeX file, 5 pages, 4 Postscript figure
Charge Screening Effect in Metallic Carbon Nanotubes
Charge screening effect in metallic carbon nanotubes is investigated in a
model including the one-dimensional long-range Coulomb interaction. It is
pointed out that an external charge which is being fixed spatially is screened
by internal electrons so that the resulting object becomes electrically
neutral. We found that the screening length is given by about the diameter of a
nanotube.Comment: 11 pages, 6 figure
- …