5 research outputs found

    Student politics, teaching politics, black politics: an interview with Ansel Wong

    Get PDF
    Ansel Wong is the quiet man of British black politics, rarely in the limelight and never seeking political office. And yet his ‘career’ here – from Black Power firebrand to managing a multimillion budget as head of the Greater London Council’s Ethnic Minority Unit in the 1980s – spells out some of the most important developments in black educational and cultural projects. In this interview, he discusses his identification with Pan-Africanism, his involvement in student politics, his role in the establishment of youth projects and supplementary schools in the late 1960s and 1970s, and his involvement in black radical politics in London in the same period, all of which took place against the background of revolutionary ferment in the Third World and the world of ideas, and were not without their own internal class and ethnic conflicts

    A Bibliographic Listing of Nigerian Plays in English: 1956-1992

    No full text

    Phosphate and FGF-23 homeostasis after kidney transplantation

    No full text
    Dysregulated phosphate metabolism is a common consequence of chronic kidney disease, and is characterized by a high circulating level of fibroblast growth factor (FGF)-23, hyperparathyroidism, and hyperphosphataemia. Kidney transplantation can elicit specific alterations to phosphate metabolism that evolve over time, ranging from severe hypophosphataemia (1.50 mmol/l) and high FGF-23 levels. The majority of renal transplant recipients develop hypophosphataemia during the first 3 months after transplantation as a consequence of relatively slow adaptation of FGF-23 and parathyroid hormone levels to restored renal function, and the influence of immunosuppressive drugs. By 3-12 months after transplantation, phosphate homeostasis is at least partially restored in the majority of recipients, which is paralleled by a substantially reduced risk of cardiovascular-associated morbidity and mortality compared with the pre-transplantation setting. Many renal transplant recipients, however, exhibit persistent abnormalities in phosphate homeostasis, which is often due to multifactorial causes, and may contribute to adverse outcomes on the cardiovascular system, kidney, and bone. Dietary and pharmacologic interventions might improve phosphate homeostasis in renal transplant recipients, but additional insight into the pathophysiology of transplantation-associated abnormalities in phosphate homeostasis is needed to further optimize disease management and improve prognosis for renal transplant recipients

    West Africa

    No full text

    Phosphate and FGF-23 homeostasis after kidney transplantation

    No full text
    corecore