30 research outputs found

    A Powertrain LQR-Torque Compensator with Backlash Handling

    No full text

    Control design for integrator hybrid systems

    No full text

    A performance comparison of robust adaptive controllers: linear systems

    No full text
    We consider robust adaptive control designs for relative degree one, minimum phase linear systems of known high frequency gain. The designs are based on the dead-zone and projection modifications, and we compare their performance w.r.t. a worst case transient cost functional with a penalty on the L∞ norm of the output, control and control derivative. We establish two qualitative results. If a bound on the L∞ norm of the disturbance is known and the known a priori bound on the uncertainty level is sufficiently conservative, then it is shown that a dead-zone controller outperforms a projection controller. The complementary result shows that the projection controller is superior to the dead-zone controller when the a priori information on the disturbance level is sufficiently conservative

    Power capability prediction for lithium-ion batteries using economic nonlinear model predictive control

    No full text
    Technical challenges facing determination of battery available power arise from its complicated nonlinear dynamics, input and output constraints, and inaccessible internal states. Available solutions often resorted to open-loop prediction with simplified battery models or linear control algorithms. To resolve these challenges simultaneously, this paper formulates an economic nonlinear model predictive control to forecast a battery\u27s state-of-power. This algorithm is built upon a high-fidelity model that captures nonlinear coupled electrical and thermal dynamics of a lithium-ion battery. Constraints imposed on current, voltage, temperature, and state-of-charge are then taken into account in a systematic fashion. Illustrative results from several different tests over a wide range of conditions demonstrate that the proposed approach is capable of accurately predicting the power capability with the error less than 0.2% while protecting the battery from undesirable reactions. Furthermore, the effects of temperature constraints, prediction horizon, and model accuracy are quantitatively examined. The proposed power prediction algorithm is general and then can be equally applicable to different lithium-ion batteries and cell chemistries where proper mathematical models exist
    corecore