4 research outputs found
Cardiac contractility modulation in patients with heart failure - A review of the literature.
Experimental in vivo and in vitro studies showed that electric currents applied during the absolute refractory period can modulate cardiac contractility. In preclinical studies, cardiac contractility modulation (CCM) was found to improve calcium handling, reverse the foetal myocyte gene programming associated with heart failure (HF), and facilitate reverse remodeling. Randomized control trials and observational studies have provided evidence about the safety and efficacy of CCM in patients with HF. Clinically, CCM therapy is indicated to improve the 6-min hall walk, quality of life, and functional status of HF patients who remain symptomatic despite guideline-directed medical treatment without an indication for cardiac resynchronization therapy (CRT) and have a left ventricular ejection fraction (LVEF) ranging from 25 to 45%. Although there are promising results about the role of CCM in HF patients with preserved LVEF (HFpEF), further studies are needed to elucidate the role of CCM therapy in this population. Late gadolinium enhancement (LGE) assessment before CCM implantation has been proposed for guiding the lead placement. Furthermore, the optimal duration of CCM application needs further investigation. This review aims to present the existing evidence regarding the role of CCM therapy in HF patients and identify gaps and challenges that require further studies. [Abstract copyright: © 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Atrial fibrillation in the setting of cardiac amyloidosis - A review of the literature.
Cardiac amyloidosis (CA) is related to the aggregation of insoluble fibrous deposits of misfolded proteins within the myocardium. Transthyretin amyloidosis (ATTR) and immunoglobulin light-chain amyloidosis are the main forms of CA. Atrial fibrillation (AF) is a common arrhythmia in CA patients, especially in those with ATTR amyloidosis. Increased atrial preload and afterload, atrial enlargement, enhanced atrial wall stress, and autonomic dysfunction are the main mechanisms of AF in CA patients. CA is associated with the formation of endocardial thrombi and systemic embolism. The promoters of thrombogenesis include endomyocardial damage, blood stasis, and hypercoagulability. The prevalence of thrombi in patients with AF remains elevated despite long-term anticoagulation. Consequently, transesophageal ultrasound examinations before cardioversion should be performed to exclude endocardiac thrombi despite anticoagulation. Furthermore, the CHA DS -VASc score should not be used to assess the thromboembolic risk in CA patients with AF. Rate control is challenging in patients with CA, while rhythm control is the preferred treatment option, especially in the early stages of the disease process. Although catheter ablation is an effective treatment option, more data are needed to explore the role of the procedure in CA patients. [Abstract copyright: Copyright © 2024. Published by Elsevier Ltd.
Cardiac contractility modulation in patients with heart failure — A review of the literature
Experimental in vivo and in vitro studies showed that electric currents applied during the absolute refractory period can modulate cardiac contractility. In preclinical studies, cardiac contractility modulation (CCM) was found to improve calcium handling, reverse the foetal myocyte gene programming associated with heart failure (HF), and facilitate reverse remodeling. Randomized control trials and observational studies have provided evidence about the safety and efficacy of CCM in patients with HF. Clinically, CCM therapy is indicated to improve the 6-min hall walk, quality of life, and functional status of HF patients who remain symptomatic despite guideline-directed medical treatment without an indication for cardiac resynchronization therapy (CRT) and have a left ventricular ejection fraction (LVEF) ranging from 25 to 45%. Although there are promising results about the role of CCM in HF patients with preserved LVEF (HFpEF), further studies are needed to elucidate the role of CCM therapy in this population. Late gadolinium enhancement (LGE) assessment before CCM implantation has been proposed for guiding the lead placement. Furthermore, the optimal duration of CCM application needs further investigation. This review aims to present the existing evidence regarding the role of CCM therapy in HF patients and identify gaps and challenges that require further studies
Atrial fibrillation in the setting of cardiac amyloidosis - A review of the literature.
Cardiac amyloidosis (CA) is related to the aggregation of insoluble fibrous deposits of misfolded proteins within the myocardium. Transthyretin amyloidosis (ATTR) and immunoglobulin light-chain amyloidosis are the main forms of CA. Atrial fibrillation (AF) is a common arrhythmia in CA patients, especially in those with ATTR amyloidosis. Increased atrial preload and afterload, atrial enlargement, enhanced atrial wall stress, and autonomic dysfunction are the main mechanisms of AF in CA patients. CA is associated with the formation of endocardial thrombi and systemic embolism. The promoters of thrombogenesis include endomyocardial damage, blood stasis, and hypercoagulability. The prevalence of thrombi in patients with AF remains elevated despite long-term anticoagulation. Consequently, transesophageal ultrasound examinations before cardioversion should be performed to exclude endocardiac thrombi despite anticoagulation. Furthermore, the CHA DS -VASc score should not be used to assess the thromboembolic risk in CA patients with AF. Rate control is challenging in patients with CA, while rhythm control is the preferred treatment option, especially in the early stages of the disease process. Although catheter ablation is an effective treatment option, more data are needed to explore the role of the procedure in CA patients